34,571 research outputs found
HR: A System for Machine Discovery in Finite Algebras
We describe the HR concept formation program which invents mathematical definitions and conjectures in finite algebras such as group theory and ring theory. We give the methods behind and the reasons for the concept formation in HR, an evaluation of its performance in its training domain, group theory, and a look at HR in domains other than group theory
Galactic cosmic ray antiprotons and supersymmetry
The physics of the annihilation of photinos is considered as a function of mass in detail, in order to obtain the energy spectra of the cosmic ray antiprotons produced under the assumption that photinos make up the missing mass in the galactic halo. The modulated spectrum is at 1 a.w. with the cosmic ray antiprotons data. A very intriguing fit is obtained to all of the present antiprotons up to 13.4 GeV data for similar to 15 GeV. A cutoff is predicted in the antiprotons spectrum at E = photino mass above which only a small flux from secondary production should remain
European Paediatric Formulation Initiative (EuPFI)-Formulating Ideas for Better Medicines for Children.
© American Association of Pharmaceutical Scientists 2016, published by Springer US, available online at doi: https://doi.org/10.1208/s12249-016-0584-1The European Paediatric Formulation Initiative (EuPFI), founded in 2007, aims to promote and facilitate the preparation of better and safe medicines for children through linking research and information dissemination. It brings together the capabilities of the industry, academics, hospitals, and regulators within a common platform in order to scope the solid understanding of the major issues, which will underpin the progress towards the future of paediatric medicines we want.The EuPFI was formed in parallel to the adoption of regulations within the EU and USA and has served as a community that drives research and dissemination through publications and the organisation of annual conferences. The membership and reach of this group have grown since its inception in 2007 and continue to develop and evolve to meet the continuing needs and ambitions of research into and development of age appropriate medicines. Five diverse workstreams (age-appropriate medicines, Biopharmaceutics, Administration Devices, Excipients and Taste Assessment & Taste Masking (TATM)) direct specific workpackages on behalf of the EuPFI. Furthermore, EuPFI interacts with multiple diverse professional groups across the globe to ensure efficient working in the area of paediatric medicines. Strong commitment and active involvement of all EuPFI stakeholders have proved to be vital to effectively address knowledge gaps related to paediatric medicines, discuss potential areas for further research and identify issues that need more attention and analysis in the future.Peer reviewedFinal Accepted Versio
Review of operational aspects of initial experiments utilizing the U.S. MLS
An exercise to support the Federal Aviation Administration in demonstrating the U.S. candidate for an international microwave landing system (MLS) was conducted by NASA. During this demonstration the MLS was utilized to provide the TCV Boeing 737 research airplane with guidance for automatic control during transition from conventional RNAV to MLS RNAV in curved, descending flight; flare; touchdown; and roll-out. Flight profiles, system configuration, displays, and operating procedures used in the demonstration are described, and preliminary results of flight data analysis are discussed. Recent experiences with manually controlled flight in the NAFEC MLS environment are also discussed. The demonstration shows that in automatic three-dimensional flight, the volumetric signal coverage of the MLS can be exploited to enable a commercial carrier class airplane to perform complex curved, descending paths with precision turns into short final approaches terminating in landing and roll-out, even when subjected to strong and gusty tail and cross wind components and severe wind shear
Philosophy and Model Theory
Model theory is used in every theoretical branch of analytic philosophy: in philosophy of mathematics, in philosophy of science, in philosophy of language, in philosophical logic, and in metaphysics. But these wide-ranging appeals to model theory have created a highly fragmented literature. On the one hand, many philosophically significant results are found only in mathematics textbooks: these are aimed squarely at mathematicians; they typically presuppose that the reader has a serious background in mathematics; and little clue is given as to their philosophical significance. On the other hand, the philosophical applications of these results are scattered across disconnected pockets of papers. The first aim of this book, then, is to consider the philosophical uses of model theory, focusing on the central topics of reference, realism, and doxology. Its second aim is to address important questions in the philosophy of model theory, such as: sameness of theories and structure, the boundaries of logic, and the classification of mathematical structures. Philosophy and Model Theory will be accessible to anyone who has completed an introductory logic course. It does not assume that readers have encountered model theory before, but starts right at the beginning, discussing philosophical issues that arise even with conceptually basic model theory. Moreover, the book is largely self-contained: model-theoretic notions are defined as and when they are needed for the philosophical discussion, and many of the most philosophically significant results are given accessible proofs
The Phase Diagram of 1-in-3 Satisfiability Problem
We study the typical case properties of the 1-in-3 satisfiability problem,
the boolean satisfaction problem where a clause is satisfied by exactly one
literal, in an enlarged random ensemble parametrized by average connectivity
and probability of negation of a variable in a clause. Random 1-in-3
Satisfiability and Exact 3-Cover are special cases of this ensemble. We
interpolate between these cases from a region where satisfiability can be
typically decided for all connectivities in polynomial time to a region where
deciding satisfiability is hard, in some interval of connectivities. We derive
several rigorous results in the first region, and develop the
one-step--replica-symmetry-breaking cavity analysis in the second one. We
discuss the prediction for the transition between the almost surely satisfiable
and the almost surely unsatisfiable phase, and other structural properties of
the phase diagram, in light of cavity method results.Comment: 30 pages, 12 figure
Aggregating Dependency Graphs into Voting Agendas in Multi-Issue Elections
Many collective decision making problems have a
combinatorial structure: the agents involved must
decide on multiple issues and their preferences over
one issue may depend on the choices adopted for
some of the others. Voting is an attractive method
for making collective decisions, but conducting a
multi-issue election is challenging. On the one hand,
requiring agents to vote by expressing their preferences
over all combinations of issues is computationally
infeasible; on the other, decomposing the
problem into several elections on smaller sets of
issues can lead to paradoxical outcomes. Any pragmatic
method for running a multi-issue election will
have to balance these two concerns. We identify
and analyse the problem of generating an agenda
for a given election, specifying which issues to vote
on together in local elections and in which order to
schedule those local elections
Local search for stable marriage problems
The stable marriage (SM) problem has a wide variety of practical
applications, ranging from matching resident doctors to hospitals, to matching
students to schools, or more generally to any two-sided market. In the
classical formulation, n men and n women express their preferences (via a
strict total order) over the members of the other sex. Solving a SM problem
means finding a stable marriage where stability is an envy-free notion: no man
and woman who are not married to each other would both prefer each other to
their partners or to being single. We consider both the classical stable
marriage problem and one of its useful variations (denoted SMTI) where the men
and women express their preferences in the form of an incomplete preference
list with ties over a subset of the members of the other sex. Matchings are
permitted only with people who appear in these lists, an we try to find a
stable matching that marries as many people as possible. Whilst the SM problem
is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both
problems via a local search approach, which exploits properties of the problems
to reduce the size of the neighborhood and to make local moves efficiently. We
evaluate empirically our algorithm for SM problems by measuring its runtime
behaviour and its ability to sample the lattice of all possible stable
marriages. We evaluate our algorithm for SMTI problems in terms of both its
runtime behaviour and its ability to find a maximum cardinality stable
marriage.For SM problems, the number of steps of our algorithm grows only as
O(nlog(n)), and that it samples very well the set of all stable marriages. It
is thus a fair and efficient approach to generate stable marriages.Furthermore,
our approach for SMTI problems is able to solve large problems, quickly
returning stable matchings of large and often optimal size despite the
NP-hardness of this problem.Comment: 12 pages, Proc. COMSOC 2010 (Third International Workshop on
Computational Social Choice
On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry
We consider a common type of symmetry where we have a matrix of decision
variables with interchangeable rows and columns. A simple and efficient method
to deal with such row and column symmetry is to post symmetry breaking
constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and
negative results on posting such symmetry breaking constraints. On the positive
side, we prove that we can compute in polynomial time a unique representative
of an equivalence class in a matrix model with row and column symmetry if the
number of rows (or of columns) is bounded and in a number of other special
cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are
often effective in practice, they can leave a large number of symmetric
solutions in the worst case. In addition, we prove that propagating DOUBLELEX
completely is NP-hard. Finally we consider how to break row, column and value
symmetry, correcting a result in the literature about the safeness of combining
different symmetry breaking constraints. We end with the first experimental
study on how much symmetry is left by DOUBLELEX and SNAKELEX on some benchmark
problems.Comment: To appear in the Proceedings of the 16th International Conference on
Principles and Practice of Constraint Programming (CP 2010
- …