335 research outputs found

    Variability of structural and electronic properties of bulk and monolayer Si2Te3

    Full text link
    Since the emergence of monolayer graphene as a promising two-dimensional material, many other monolayer and few-layer materials have been investigated extensively. An experimental study of few-layer Si2Te3 was recently reported, showing that the material has diverse properties for potential applications in Si-based devices ranging from fully integrated thermoelectrics to optoelectronics to chemical sensors. This material has a unique layered structure: it has a hexagonal closed-packed Te sublattice, with Si dimers occupying octahedral intercalation sites. Here we report a theoretical study of this material in both bulk and monolayer form, unveiling a fascinating array of diverse properties arising from reorientations of the silicon dimers between planes of Te atoms. The lattice constant varies up to 5% and the band gap varies up to 40% depending on dimer orientations. The monolayer band gap is 0.4 eV larger than the bulk-phase value for the lowest-energy configuration of Si dimers. These properties are, in principle, controllable by temperature and strain, making Si2T3 a promising candidate material for nanoscale mechanical, optical, and memristive devices.Comment: 9 pages, 4 figure

    Mapping the wavefunction of transition metal acceptor states in the GaAs surface

    Full text link
    We utilize a single atom substitution technique with spectroscopic imaging in a scanning tunneling microscope (STM) to visualize the anisotropic spatial structure of magnetic and non-magnetic transition metal acceptor states in the GaAs (110) surface. The character of the defect states play a critical role in the properties of the semiconductor, the localization of the states influencing such things as the onset of the metal-insulator transition, and in dilute magnetic semiconductors the mechanism and strength of magnetic interactions that lead to the emergence of ferromagnetism. We study these states in the GaAs surface finding remarkable similarities between the shape of the acceptor state wavefunction for Mn, Fe, Co and Zn dopants, which is determined by the GaAs host and is generally reproduced by tight binding calculations of Mn in bulk GaAs [Tang, J.M. & Flatte, M.E., Phys. Rev. Lett. 92, 047201 (2004)]. The similarities originate from the antibonding nature of the acceptor states that arise from the hybridization of the impurity d-levels with the host. A second deeper in-gap state is also observed for Fe and Co that can be explained by the symmetry breaking of the surface.Comment: 19 pages, 6 figure

    Atomic-Scale Dynamics of the Formation and Dissolution of Carbon Clusters in SiO2

    Full text link
    Oxidation of SiC produces SiO2 while CO is released. A `reoxidation' step at lower temperatures is, however, necessary to produce high-quality SiO2. This step is believed to cleanse the oxide of residual C without further oxidation of the SiC substrate. We report first-principles calculations that describe the nucleation and growth of O-deficient C clusters in SiO2 under oxidation conditions, fed by the production of CO at the advancing interface, and their gradual dissolution by the supply of O under reoxidation conditions. We predict that both CO and CO2 are released during both steps.Comment: RevTex, 4 pages, 2 ps figures, to appear in Phys. Rev. Lett. (June 25, 2001

    Zero-bias molecular electronics: Exchange-correlation corrections to Landauer's formula

    Get PDF
    Standard first principles calculations of transport through single molecules miss exchange-correlation corrections to the Landauer formula. From Kubo response theory, both the Landauer formula and these corrections in the limit of zero bias are derived and calculations are presented.Comment: 4 pages, 3 figures, final version to appear in Phys. Rev. B, Rapid Communication

    Theory-assisted determination of nano-rippling and impurities in atomic resolution images of angle-mismatched bilayer graphene

    Get PDF
    Ripples and impurity atoms are universally present in 2D materials, limiting carrier mobility, creating pseudo–magnetic fields, or affecting the electronic and magnetic properties. Scanning transmission electron microscopy (STEM) generally provides picometer-level precision in the determination of the location of atoms or atomic 'columns' in the in-image plane (xy plane). However, precise atomic positions in the z-direction as well as the presence of certain impurities are difficult to detect. Furthermore, images containing moiré patterns such as those in angle-mismatched bilayer graphene compound the problem by limiting the determination of atomic positions in the xy plane. Here, we introduce a reconstructive approach for the analysis of STEM images of twisted bilayers that combines the accessible xy coordinates of atomic positions in a STEM image with density-functional-theory calculations. The approach allows us to determine all three coordinates of all atomic positions in the bilayer and establishes the presence and identity of impurities. The deduced strain-induced rippling in a twisted bilayer graphene sample is consistent with the continuum model of elasticity. We also find that the moiré pattern induces undulations in the z direction that are approximately an order of magnitude smaller than the strain-induced rippling. A single substitutional impurity, identified as nitrogen, is detected. The present reconstructive approach can, therefore, distinguish between moiré and strain-induced effects and allows for the full reconstruction of 3D positions and atomic identities
    • …
    corecore