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We show that standard first principles calculations of transport through single molecules miss exchange-
correlation corrections to the Landauer formula—the conductance is calculated at the Hartree level. Further-
more, the lack of derivative discontinuity in approximations can cause large errors for molecules weakly
coupled to the electrodes. From the Kubo response theory, both the Landauer formula and these corrections in
the limit of zero bias are derived and calculations are presented.
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Much experimental progress has been made in recent
years in developing methods to measure the conductance of
single or few molecules in between macroscopic leads, and
there is a keen interest in the theoretical modeling of such
systems.1 In the case of organic molecules, covalently bound
to the metallic electrodes, the transport properties are sensi-
tive to the electronic structure, so chemical details are likely
to be important, and a first principles treatment is desirable.
In order to describe the coupling of the molecule to the mac-
roscopic leads in an appropriate way, parts of the leads must
be included in the calculation. Given the number of atoms
required to simulate both the molecule and the first layers of
the leads, density functional theory �DFT� is an obvious
choice.

Since the first successful conductance experiments for
single molecules, there have been several ground-breaking
calculations of this type, and a variety of codes perform
DFT-based calculations of I-V curves of single molecules
between metallic contacts.2–8 In these calculations, a poten-
tial difference V between the bulk electrodes is imposed. A
self-consistent ground-state Kohn-Sham �KS� calculation is
performed for the molecule plus a few layers of the leads.
Then, via Green’s functions the current is calculated using
the celebrated two-terminal Landauer formula.9 The macro-
scopic leads enter via self-energies. We denote this “stan-
dard” approach by its common acronym, NEGF �nonequilib-
rium Green’s function technique�. These calculations are
parameter free and often yield qualitative agreement with the
experiment, and so might appear to be as rigorous as any
DFT calculations. But a detailed comparison for organic
molecules between Au electrodes reveals quantitative dis-
crepancies. Conductances are typically overestimated, often
by 1 or 2 orders of magnitude.10

Neither the Hohenberg-Kohn theorem,11 which estab-
lished ground-state DFT, nor the Runge-Gross theorem for
time-dependent problems,12 apply to extended systems car-
rying current in homogeneous electric fields. In consequence,
questions have recently been raised about the validity of the
NEGF approach.10,13 For example, the calculated transmis-
sion is that of the KS potential. In the case of a molecule

weakly coupled to two leads, whose KS levels are sharp,
well-separated resonances, the NEGF approach produces
peaks in the conductance at the positions of the unoccupied
levels of the KS system.5 Such transitions are known to dif-
fer, in general, from the true excitations of the interacting
electronic system.

To tackle the transport problem rigorously for a finite bias
is daunting, and only recently have several suggestions been
put forward.14–16 In the present paper, we examine only the
weak bias regime, i.e., the limit in which the potential differ-
ence across the molecule is infinitesimal, because here we
can deduce the exact answer.

A primary result of this paper is to rigorously demonstrate
that NEGF calculations include only the Hartree response of
the system. It is alarming, that this level of calculation can be
inadequate already, when, e.g., the response of an isolated
molecule to a static electric field is to be considered. This
lack is utterly independent of which standard approximate
functional is used: All DFT calculations to date suffer from
this limitation. It is inherent in the methodology, just as for
all Hartree calculations. Second, we estimate the size of the
exchange-correlation �XC� corrections using the gradient ex-
pansion in the current of Vignale-Kohn.17 Even when such
contributions are small, the lack of derivative discontinuity in
semilocal functional approximations for the ground state
likely produces significant errors. Finally, we argue that, un-
der certain conditions, peak spacings in a zero-bias Coulomb
blockade experiment are accurately given by NEGF calcula-
tions.

Consider any system that can carry a dc current in a spe-
cific direction �which we call the z direction� and that con-
tains some atomic-sized barriers in this direction. For sim-
plicity, we analyze only the symmetric case. We apply a
weak uniform �also for simplicity� electric field in the z di-
rection, and use time-dependent current density functional
theory �TDCDFT� to calculate the current response.

The response of a system to a weak electric field is given
by the Kubo formula as

PHYSICAL REVIEW B 73, 121403�R� �2006�

RAPID COMMUNICATIONS

1098-0121/2006/73�12�/121403�4�/$23.00 ©2006 The American Physical Society121403-1

http://dx.doi.org/10.1103/PhysRevB.73.121403


j�r�� =� d3r� �̂�rr���Eext�r��� , �1�

where j�r�� is the first-order �physical� current density re-
sponse to the external electric field, and we use atomic units
throughout. Here �̂�rr��� is the frequency-dependent nonlo-
cal conductance describing the response to the external field,
rather than the response to the total electric field.

Within TDCDFT, the KS system is defined to reproduce
the time-dependent current density. Thus, Eq. �1� becomes,
for the KS system,

j�r�� =� d3r� �̂S�n0��rr���„Etot�r��� + EXC�r���… , �2�

where j�r�� is still the exact physical current response, but
now found from the KS nonlocal conductance �a functional
of the ground-state density n0� applied to the KS electric
field, which includes both the total electric field �external
plus Hartree� and the XC contributions.

The external field produces a finite potential drop V across
the barrier.20 We restrict ourselves to one dimension, to dem-
onstrate the principle. In the limit in which �→0, the non-
local conductance becomes coordinate independent.18,19

Thus, the left-hand side becomes independent of z, and the
integral over z� applies only to the potentials,

I = �Szz�� = 0��V + VXC� , �3�

where V is the integral over the external and Hartree fields
and VXC is the induced net XC potential drop in the vicinity
of the barrier. Equation �3� and the following interpretation
are the important results of this paper. We analyze it in two
steps.

�i� Ignore VXC: in the absence of the XC potential drop,
Eq. �3� tells us that the conductance, I-V, is just that of the
ground-state KS system. Careful derivations18 show that, for
noninteracting systems,

�Szz�� = 0� = TS��F�/� , �4�

where T��� is the transmission through all channels through
the barrier. The resonances in the KS transmission function
translate into peaks in the conductance for the interacting
system without correction.

This brings us to the problem mentioned in the second
paragraph, namely, the positions of the resonances in the
NEGF approach compared to the physical system. Imagine
the case of a one-dimensional double barrier, as shown in
Fig. 1 as the “molecule.” Usually, �F is located in a spectral
gap of the molecule, �as in Fig. 1�, so that the system is

off-resonance and the conductance is nonvanishing only due
to the small overlap between the very weakly broadened lev-
els and �F.

To probe the unoccupied resonances at zero bias, apply a
gate voltage Vg to the molecule perpendicular to the leads,
shifting the lowest unoccupied molecular orbital �LUMO�
down to �F. As it passes through �F �as a function of Vg�,
there will be a large peak in the conductance. But consider
what happens when the resonance begins to overlap with �F.
By virtue of its n0 dependence, the exact KS ground-state
potential differs significantly from the off-resonant case, al-
tering the transmission characteristics. Peaks in transmission
are not at the position of �Vg=0�-unoccupied resonances.

For a sharp resonance, the transmission coefficient is
given by

T��� = ��

2
�2

/��� − �res�2 + ��

2
�2	 , �5�

where �res and � are the position and width of the resonance,
which, in DFT, depend on the partial occupation, 0� f �1,
of the resonant level. We will now see how the use of
smooth, approximate density functionals influences the posi-
tion and width of the resonance.

Using the spectral function A�E� we can write expressions
for the spectral density of states, n���= 1

�A, as well as for the
transmission T= �

2 A, to obtain a simple linear relationship
between n��� and the transmission of such a level, n���
=2T��� / ����. The self-consistent f is found from integrating
over n��� as

f = �
−	

�F

d� n��� =
1

2
+

1

�
tan−1�2

�F − �res�f�
��f� 	 . �6�

After inverting this,

T−1��F� = 1 + tan2
�„f��F� − 1/2…� . �7�

In Fig. 2, we plot the transmission over energy for this
situation, with the parameters given in the caption. For this
calculation we set the width constant (��f�=�0). The actual
dependence of � on f is expected to be weak and have little
effect on transmission peaks. Now 
�=�H−�L is several eV,

FIG. 1. Double barrier resonant tunneling cartoon of a molecule
between two metallic leads; the LUMO has been shifted and broad-
ened relative to the isolated molecule.

FIG. 2. Conductance peak from resonance: the dashed line is the
self-consistent approximate functional result, the dotted line is the
approximate result as �→0, and the solid line is the exact result.
Here �L=0, 
�=1, and �0=0.1.
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where �H is the highest occupied orbital of the N+1-electron
molecule, and �L is the LUMO of the N-electron molecule.
As in a NEGF calculation using a semilocal functional, �res
always depends smoothly on f , and varies continuously be-
tween �L and �H, we obtain �assuming �res=�L+ f
�� the
dashed line.

For weakly coupled leads, where ��
� �at any occupa-
tion�, the Fermi level is pinned to the resonance (�res�f�
→�F) for f �0 or 1, so �F=�L+
�f and we obtain, using Eq.
�7� the dotted line in Fig. 2. Thus, in an NEGF calculation,
Eq. �7� always produces a broad peak whose width is com-
parable to 
�. For the case of a linear relation, the width is
just 
� /2.

But this is entirely an artifact of smooth density functional
approximations. The real system has a sharp resonance cen-
tered at �H. The exact KS potential of the molecule jumps
�relative to the reservoir� as soon as there is an infinitesimal
occupation of the resonant level,

�res = �L + ��f + �
� � → 0� . �8�

Solving Eq. �6� for �F, we obtain a peak in the transmission
of width � around �H—the solid line in Fig. 2. This is the
famous derivative discontinuity21 of DFT.

Since the true transmission will be much more narrowly
peaked than that in the approximate DFT calculation, if the
system is off-resonance, the DFT calculation produces a
strong overestimate of the true conductance. Figure 2 is a
cartoon of this situation, in which the width of the resonance
is 10% of the level shift, and a severe overestimate occurs if
the Fermi level is at, e.g., 0.5.

In reality, organic molecules may not be so weakly
coupled to the leads �although the widths of resonances in
GGA calculations are not a sure indicator of this, for the
reasons given above�. But this effect, or some remnant of it
at less weak coupling, would explain the severe overesti-
mate. In Ref. 10, the conductance of benzene was calculated
in two ways, �a� by employing the standard approach based
on the KS energies and orbitals of an equilibrium DFT cal-
culation �GGA� and �b� by replacing the KS data with their
counterparts obtained from a Hartree-Fock analysis. The
typical transmission level in a window of 2eV about �F was
reduced by an order of magnitude. The best current way to
see if this effect is the culprit for the overestimate would be
to perform exact exchange calculations,22 which should con-
tain most of the effects of the true discontinuity.

�ii� Include VXC: Now we discuss how to include

VXC =� dz Ez,XC �z,� → 0� , �9�

where EXC is the XC electric field induced in response to the
applied field �and ignoring the coupling between the longi-
tudinal and transverse modes in �S�. We first note that, for
any pure density functional, EXC=−� ·�vXC, so that VXC
=�vXC�z→ 	 �−�vXC�z→−	 �, i.e., the net induced XC po-
tential drop from the extreme left to the extreme right of the
barrier. In any semilocal approximation, VXC therefore van-
ishes identically, as the induced density response is localized
to the region of the barrier, so that far from the barrier,

�vXC=0. Thus, using common density functionals, the cor-
rections to the KS Landauer formula vanish.

The corrections are produced by nonlocal interactions
present in the exact XC functional. At least two mechanisms
are well established, which generate such interaction terms
that are nonlocal in the density. The most obvious one is
exact exchange. Even a simple static exchange calculation,22

including response terms �i.e., beyond NEGF�, might yield a
finite result, i.e., a net drop in the exchange potential across
the barrier, just as Hartree does. A second mechanism is of
the hydrodynamical type and therefore finds its natural de-
scription within TDCDFT. For this case we are able to offer
an analytical estimate for the size of the effect. In the spirit
of Ref. 23, we use the Vignale-Kohn �VK� approximation17

to obtain an expression for the purely viscous contribution to
VXC �although the original derivation assumes a high-
frequency regime�. It involves a spatial variation of the den-
sity, n�x�, which originates from the backscattering off the
barrier. A rough estimate is obtained by assuming �a� that the
most important variations in the density profile along the
wire are of the Friedel type and �b� that the viscosity can be
approximated by its static, homogenous value characteristic
of a three-dimensional Fermi liquid. With these simplifica-
tions Eq. �9� can be rewritten as

VXC/V � − „1 − T��F�…T��F�/�40�1/2kF
3/2� . �10�

The viscosity counteracts the current flow and reduces the
conductance. The factor �1−T� takes into account that a bar-
rier causing reflection �and thus density inhomogeneities� is
needed for viscous flow to be generated.

Because kF�1, the small prefactor �together with the fact
that T�1 for well-resolved resonances� guarantees only
small corrections, as was found in a recent calculation.24 This
result, though suggestive, is not rigorous, however, because
it ignores both the elastic hydrodynamic contribution and the
limited validity of VK.

Finally, we show how, despite the fact that XC corrections
to the voltage �VXC in Eq. �3�� are missing, NEGF might be
used to obtain exact information to be compared with experi-
ment. Consider Coulomb blockade experiments, which mea-
sure zero-bias conductance as a function of Vg.25 In Fig. 3 we
show the transmission of a benzene ring, coupled via two
sulphur atoms to gold electrodes, obtained from a NEGF
transport calculation.26 The KS LUMO moves toward �F

FIG. 3. Transmission of benzene-dithiolate in the presence of a
gate. The gate is realized by a square sheet of homogenously dis-
tributed dummy charges �total sum is denoted by QG� located a
distance of 3.8 Å above the carbon ring.
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with increasing gate charge �voltage�. As argued above, the
position of the LUMO does not give a reliable estimate for
the real peak position. However, at the particular Vg where
the LUMO passes through �F, its energy must coincide with
the real many-body level. �In Fig. 3, this would correspond
to QG�6.� Therefore, at those Vg where a KS level crosses
�F, a peak in the I-V characteristics is observed. The peak
spacings are given by a ground-state DFT calculation.

Our calculation demonstrates the principle. It is missing
the derivative discontinuity, but at least we can ignore the
missing VXC. There may be cases where the derivative dis-
continuity is unimportant �i.e., for strong coupling or larger
molecules� but the missing VXC is not. Then standard NEGF
calculations will yield accurate results for peak spacings in
Coulomb blockade experiments, although the peak heights
are strongly overestimated.

A not unlikely scenario, in which the VXC corrections are
especially large is as follows. Suppose that the quasistation-
ary nonequilibrium state with flowing current can be de-
scribed by scattering from a single-particle potential that dif-
fers from the ground-state KS potential. Then the VXC as
appearing in Eq. �3� must correct the KS off-resonant trans-
mission sufficiently to match that of the effective potential.

We conclude by noting that any formalism to treat a
many-body problem that yields the Kubo response formula
when analyzed within TDCDFT will recover Eq. �3�.14,15
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