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Abstract 

 

Ripples and impurity atoms are universally present in 2D materials, limiting carrier mobility, creating 

pseudo–magnetic fields, or affecting the electronic and magnetic properties. Scanning Transmission 

Electron Microscopy (STEM) generally provides picometer-level precision in the determination of the 

location of atoms or atomic “columns” in the in-image plane (xy plane). However, precise atomic positions 

in the z-direction as well as the presence of certain impurities are difficult to detect. Furthermore, images 

containing moiré patterns such as those in angle-mismatched bilayer graphene compound the problem by 

limiting the determination of atomic positions in the xy plane. Here, we introduce a reconstructive approach 

for the analysis of STEM images of twisted bilayers that combines the accessible xy coordinates of atomic 

positions in a STEM image with density-functional-theory calculations. The approach allows us to 

determine all three coordinates of all atomic positions in the bilayer and establishes the presence and identity 

of impurities. The deduced strain-induced rippling in a twisted bilayer graphene sample is consistent with 

the continuum model of elasticity. We also find that the moiré pattern induces undulations in the z direction 

that are approximately an order of magnitude smaller than the strain-induced rippling. A single 

substitutional impurity, identified as nitrogen, is detected. The present reconstructive approach can, 

therefore, distinguish between moiré and strain-induced effects and allows for the full reconstruction of 3D 

positions and atomic identities.  

 

 

 

Keywords  

Scanning Transmission Electron Microscope, bilayer graphene, Density Functional Theory, rippling, strain, 
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1. Introduction  

Graphene has been hailed and studied for its wide range of potential electronic and mechanical applications. 

Rippling has been seen at a variety of length scales in graphene systems [1–6], changes their electronic, 

magnetic, and other properties [1] and can induce a pseudo–magnetic field [2]. Bilayer graphene has also 

been extensively studied for a multitude of applications such as diodes, transistors, optoelectronics, and 

superconductivity [7–14]. For some of these applications, the tunability of its band gap is a valuable feature. 

Angle-mismatch between the layers of bilayer materials is common and leads to the formation of a moiré 

pattern. Moiré patterns in two-dimensional (2D) materials often obscure vital information when imaged, 

such as the underlying layer in Scanning Tunneling Microscopy (STM) and the localization of individual 

atomic “columns” in Scanning Transmission Electron Microscopy (STEM). Yet, obscured information can 

play a major role in determining the properties of the material, especially the presence of defects, interstitial 

dopants between the layers, and rippling, which affect both electronic and magnetic properties [1,2]. 

Aberration-corrected STEM is a quantitative tool that is capable of locating atomic columns in crystals with 

picometer-level precision. The ability to achieve sub-pixel precision in the location of the center of an atom 

or atomic column in STEM images has been demonstrated through the use of center-of-mass and 2D 

function fitting, which in turn has been used to help determine the properties of complex structures such as 

thin films, superlattices, and nanoparticles [15–19]. While STEM possesses picometer-scale resolution in 

the in-image-plane (xy plane), the resolution perpendicular to the image-plane (z direction) is approximately 

a nanometer, which limits the instrument’s ability to study rippling in 2D materials. In many important 

cases, precise determination of the xy coordinates of all atoms or atomic “columns” is not possible, e.g., in 

bilayers in which an angle mismatch between the layers exists and leads to moiré patterns. In such cases, 

due to apparent overlaps of atoms in the projected image, it is impossible to determine where one atom ends 

and another begins. Nevertheless, even in these materials systems, isolated areas exist that have clear and 

discernible atomic columns where it is possible to locate a subset of atomic coordinates with high precision.  

In this paper, we focus on nanoscale rippling in angle-mismatched bilayer graphene (the two layers are 

rotated with respect to each other) and demonstrate a reconstructive approach that allows us to determine 

the xyz coordinates of all atoms by using the xy coordinates of only the limited number of discernible atoms 

in the bilayer image and performing suitable density-functional-theory (DFT) calculations. By combining 

the information obtained from the distances between moiré nodes (from here on referred to simply as nodes) 

and those atomic positions that can be accurately extracted from the STEM image, a defect-free reference 

patch is constructed. DFT is then used to optimize the atomic coordinates in the reference patch under the 

constraint of the known xy atomic coordinates. By simulating the STEM image using the optimized 

reference patch, a local-area correlation is done with the experimental image. Areas of low correlation are 

then attributed to the presence of defects. The atom(s) in areas of low correlation can then be replaced by 

likely defect candidates and the local-area correlation is repeated until the defect causing the low correlation 

is identified. In the present case, only a single atomic site exhibits low correlation and we are able to identify 

it as substitutional nitrogen. The z information for each layer can further be used to quantify the rippling in 

the sample. In the case at hand, the predominant source of rippling is determined to be caused by strain in 

the sample. Furthermore, the distance between the two layers can be used to determine the moiré-pattern-

induced undulations, which are in agreement with those previously predicted by theory [20]. The 

reconstructive analysis of bilayers, which is accomplished by combining STEM with DFT to determine 

atomic coordinates in three dimensions, while potentially computationally expensive, allows for a complete 

characterization of nano-rippling in a way that is impossible from imaging alone.  
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2. Methods and Materials 

 2.1. Sample preparation and data collection  

High-quality graphene was grown on copper foils using atmospheric-pressure chemical vapor deposition 

(CVD)  [21]. The graphene was subsequently transferred to TEM grids [22] following a direct transfer 

procedure [13]. A TEM grid was placed upside down directly on top of a copper foil coated with CVD 

graphene forming a stack. A drop of isopropyl alcohol (IPA) was applied to the stack. Upon evaporation of 

the IPA, graphene was pulled from the copper surface and adhered strongly to the TEM grid. Excess copper 

was removed with CE-100 copper etchant. The remaining TEM grid with graphene was rinsed in three 

baths of deionized water and IPA. This procedure resulted in large coverage of residue-free monolayer 

graphene and, critically, some regions of bilayer graphene originating from monolayer graphene that folded 

during transfer. 

The bilayer graphene was experimentally analyzed using annular dark field (ADF) imaging on a Nion 

aberration-corrected UltraSTEM 100, operated at an accelerating voltage of 60 kV [23]. Figure 1(a) shows 

an atomic-resolution ADF image (1024 x 1024 pixels) of angle-mismatched bilayer graphene. To reduce 

noise in the image, Figure 1(a) was filtered with a Gaussian blur [24] with a standard deviation of two 

pixels, producing figure 1(b). Figure 1(b) shows both the atomic columns of individual carbon atoms and 

the moiré pattern caused by the incommensurate rotation angle.  

 2.2. Determining the angle of relative rotation 

To determine the angle of relative rotation between the two layers of graphene (figure 1a-1b), a Gaussian 

blur with a sigma of 10 pixels was applied to the original image (figure 1c-d). From this image, it is clear 

 

Figure 1. (a) ADF STEM image of a graphene bilayer with relative rotation between the layers 

(mismatched or twisted graphene bilayer), as acquired. (b) The same image with a small Gaussian 

blur more clearly shows the presence of two types of moiré nodes in the moiré pattern (primary – 

higher intensity, secondary – lower intensity). (c-d) The same image with a heavy Gaussian blur 

used to indicate the deviations from a perfect moiré pattern due to strain. (c) Distances between 

secondary and primary nodes (in nm: black) and angle between secondary nodes around a central 

primary node (in degrees: red). (d) Distances between secondary nodes (in nm: black). 
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that there are two different types of moiré nodes in the moiré pattern: brighter nodes that correspond to 

areas of highest lattice correlation (primary nodes, AA stacking) and dimmer nodes that correspond to areas 

of highest anti-correlation (secondary nodes, AB stacking) of the two lattices. In order to determine the 

angle of relative rotation between the graphene layers, the distance between the moiré nodes must be 

determined. The moiré nodes were isolated by first using an image threshold of 75% of the maximum 

intensity followed by density-based clustering [25]. Once the moiré nodes where isolated, a center-of-mass 

algorithm was used to find the center of each node while the average intensity of the node was used to 

determine if a node is primary or secondary. Using the center point of each moiré node, the distance between 

a primary node and its surrounding secondary nodes (Figure 1c), the distance between the secondary nodes 

around the primary node (Figure 1d), and the angle separating the secondary nodes around the primary node 

(Figure 1c) were calculated. These distances and angles are not uniform, implying the presence of strain in 

the sample. 

The angle 𝜃 of relative rotation between the two layers can then be determined from the primary-to-primary 

moiré-node distance via [26]: 

 

where a and b represent the lattice constants of the two layers. For bilayer graphene, both are 2.46Å. By 

substituting these values into Eq. 1, we obtain: 

Due to the variance in the moiré node distances, an average node-to-node distance was used to find the 

angle of relative rotation. To improve the average, not only were the primary-to-primary moiré node 

distances (𝐿𝑝𝑝) used, but secondary-to-primary moiré-node distances (𝐿𝑝𝑠) where converted into related 

primary-to-primary moiré-node distances using simple trigonometry: 

𝐿𝑝𝑝 = 2 𝑐𝑜𝑠(30°) 𝐿𝑝𝑠 = √3𝐿𝑝𝑠. 3 

Using the average node-to-node distance, the angle of relative rotation was found to be 4.45° in the present 

case. 

 2.3. Filtering image and identification of individual atomic columns 

In order to identify individual atomic positions, the original image was filtered to remove unwanted image 

collection phenomena such as noise and surface contamination. Due to the nature of the moiré interference, 

atomic columns can only be distinguished around the center of a moiré node, whereby it is only necessary 

to filter these areas. Using the center of each moiré node, a box 201x201 pixels was removed from the 

image for filtering.  A similar box area extraction (Figure 2) was used throughout this paper and is referred 

to as “local area extraction”. 

𝐿(𝜃) =
𝑎𝑏

√𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝜃
 1 

𝐿(𝜃) =
2.46

2 sin 𝜃
2⁄

 
2 
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The extracted areas around moiré nodes were filtered using a previously reported filtering technique that 

utilizes principal component analysis (PCA) to remove noise and surface contamination from the 

image[27]. This filtering technique requires slicing the image into smaller sub-images, each of which is 

then filtered separately using statistical correlations to remove noise and surface contamination. The full 

image is then reconstructed from these filtered sub-images. 

 For the secondary moiré nodes, this level of filtering is adequate. However, for primary moiré nodes where 

distinguishable atomic columns are closer together, an additional filtering step was necessary. This filtering 

step consists of a 2D correlation with an ideal atomic column (a 2D Gaussian). At each pixel, a local area 

(Figure 2) of 21x21 pixels was extracted. These areas where passed through a 2D cross-correlation [28] 

defined by 

with A being the extracted area and B a 2D Gaussian with a sigma of 13 pixels. In each node, the atomic 

columns were identified using two common image analysis techniques, intensity thresholding followed by 

density-based clustering [25]. 

 

 2.4. Creating the initial unit cell and DFT calculations  

DFT simulations of the entire image is computationally prohibitive due to the number of atoms required to 

make a periodic image with a small relative rotation angle. Instead, a patch was used. We considered an 

area of the image that encompasses two primary and two secondary nodes and constructed a corresponding 

idealized patch by taking two pristine graphene lattices overlaid in an AA-stacking configuration and a 

separation of 3.5 Å. The top lattice was then rotated to the desired angle of relative rotation (4.45°) using 

the center of a hexagon as the rotation point. The atomic coordinates in this idealized bilayer graphene patch 

are then replaced by the coordinates of the atomic columns that where determined from the experimental 

image. Protruding atoms that contain only a single carbon-carbon bond were removed from the edge of the 

patch. Edge atoms with fewer than three neighbors were passivated with hydrogen atoms. 

𝑟(𝐴, 𝐵) =
∑ ∑ (𝐴𝑚𝑛 − �̅�)(𝐵𝑚𝑛 − �̅�)𝑛𝑚

√(∑ ∑ (𝐴𝑚𝑛 − �̅�)2
𝑛𝑚 )(∑ ∑ (𝐵𝑚𝑛 − 𝐵)2

𝑛𝑚 )
, 4 

 

Figure 2. Example of local area extraction of a 11x11 area (red and yellow areas) around a center pixel 

(yellow area) from a 29x29 pixel image. 
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The constructed bilayer patch consists of 899 carbon atoms and 111 hydrogen atoms, with the patch 

spanning 45.64 x 39.31x 3.5 Å. The patch was placed into a unit cell spanning 55x55x25 Å. DFT 

calculations were performed using the Vienna ab initio Simulation Package (VASP) [29] with the Brillouin 

zone sampled at the Γ point only. The exchange-correlation functional was described via the Perdew-Burke-

Ernzerhof parametrization [30] of the generalized gradient approximation. A van der Waals dispersion 

correction was included via Grimme’s DFT-D3 method [31] and the DFT-D3 plus Becke-Jonson damping 

method [32]. The DFT-D3(BJ) correction produced results in better agreement with the experimental data 

as in a previous study of bilayer graphene by Lebedeva et al. [33]. The projector-augmented wave (PAW) 

method [34,35] was used to describe the interaction between core and valence electrons and the plane-wave 

basis-set cutoff energy was set as 400 eV. During structural optimization, the x- and y-coordinates of atoms 

that could be determined from the experimental data were held fixed while the x- and y-coordinates of the 

rest of the atoms and the z-coordinates of all atoms were allowed to move until all residual forces were less 

than 0.01 eV/Å. 

3. Results and Discussion 

To test how well theory recovered the atomic coordinates of all the atoms, the patch described above was 

removed from the original image and filtered in its entirety using the PCA filtering as in Section 2.3. The 

DFT-optimized patch (Figure 3a) was used to simulate the STEM image using the QSTEM simulation 

software [36] (Figure 3b). The beam parameters for the simulation were taken from those used during the 

experimental image acquisition, with the focus varied until the simulation was visually similar to that in the 

filtered patch (Figure 3c). To compare the simulated and experimental images, a local-area 2D cross-

correlation (Eq. 4) was employed between the filtered and simulated STEM images. This procedure 

necessitated the interpolation of the simulated image on to the same coordinate system as the experimental 

image. Once the two images were in the same coordinate system, a local area (Figure 2) of 27x27 pixels 

was extracted from both images at each pixel. The correlation between simulation and experiment is very 

good, over 0.8 in most places, with 1.0 indicating perfect correlation (Figure 3d), providing confidence that 

the deduced atomic positions are correct or extremely close to the actual positions. Any defects in the 

experimental lattice should appear as areas of low correlation.  

 

Figure 3. (a) Atomistic model showing the optimized positions of all carbon atoms with the two layers 

in different colors (b) PCA filtered simulated image of the post-DFT-optimized locations. (c) PCA 

filtered patch from the original image. (d) Map of local 2d correlation coefficients between the filtered 

simulated image and the filtered experimental image. 
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While edge effects cause areas of low correlation to occur near the edge of the patch, one significant area 

of low correlation just above the center of the patch stands out (figure 4a). In order to determine if this area 

of low correlation is caused by a defect or is a limitation of the present reconstructive-analysis method, the 

most probable defects can be inserted into the optimized DFT patch and the patch re-optimized. First, 

however, the coordinates of the atom(s) that cause the low correlation must be determined by separating 

the 2D cross-correlation map into a cross-correlation map for each layer (Figure 4b-4c). This separation is 

done by extracting local areas (Figure 2) from the 2D cross-correlation image at every atom in the lattice 

using a box 21x21 pixels. These local areas are then averaged and the results are interpolated onto the 

coordinate system of the 2D cross-correlation image. We find that the observed area of low correlation is 

centered in each layer on a single atom. The xy coordinates of these atoms are extremely close together, 

making it impossible to determine which layer contains the defect. Although it is impossible to determine 
which layer the potential defect is in, it is possible to narrow it to a single atom in each layer (Figure 4b-

4c)  

With the possible location of the defect causing the low correlation narrowed down to two potential atomic 

sites determination of the defect type was performed. A set of the most likely defects was analyzed including 

a carbon monovacancy and substitional boron, nitrogen, and oxygen atoms. The previously optimized DFT 

patch was modified and re-optimized, with each defect type tested at each of the two candidate sites. A 

simulated STEM image was then generated for each patch and new 2D cross-correlation maps were 

calculated to determine if any of these defects improved the overall correlation (Figure 5a). These new 2D 

cross-correlation maps were compared with the original defect-free scenario visually and statistically using 

the percent change in cross-correlation around the area of low correlation (Figure 5). Based on both the 

visual and statistical comparisons, the low correlation is most likely caused by a substitional nitrogen defect 

in layer 2. 

The z information from the optimized DFT positions was interpolated onto a square lattice. The optimized 

z displacements show two clear ripples in both layers (Figure 6) in the primary-primary node direction. 

These ripples have a height of ~0.75 Å (using the distance of highest to lowest atom in each layer’s graphene 

lattice) and the peak-to-peak distance of the two ripples is ~1.5 nm. When comparing the rippling predicted 

by the optimized reference patch with the experimental image, a correlation between the rippling and the 

background intensity can be visually observed. To determine the exact wavelength and amplitude of the 

 

Figure 4. (a) 2D cross-correlation map with area of interest highlighted and separated into (b) layer 1 

with atom of interest highlighted and (c) layer 2 with atom of interest highlighted. 
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rippling, the positions of the atoms were treated as a grid of points with coordinates (x,y,z). The atomic 

positions were then interpolated onto a square grid with a tight spacing between points, ~0.1 Å (Figure 6a-

6b). Once the two layers were interpolated onto a square grid (Figure 6a-b), line profiles were taken across 

the images. The line profiles were taken left to right along the x axis through the center of mass of the image 

in Figure 6 a and b, with 100 line profiles spread along an area between ±5 Å from the center of mass. The 

images were then rotated by increments of 2 degrees around the center of mass of all the image was then 

rotated  and the line profiles again extracted until the average wavelength extracted from the top and bottom 

layer matched. Using this method the wavelength and amplitude for the layers where found to be 𝜆1 =

14.64 ± 0.61Å, 𝐴1 = 0.73 ± 0.08 Å, and 𝜆2 = 14.64 ± 0.54 Å, 𝐴2 = 0.77 ± 0.06Å, giving an average 

wavelength and amplitude of 𝜆 = 14.64 ± 0.57 Å and 𝐴 = 0.75 ± 0.07 Å.  

To estimate the amount of strain, the primary-to-primary node distance and the secondary-to-secondary 

node distance in the patch were compared to the ideal distance based on the average angle of relative 

rotation in the whole image. The patch was chosen so that the primary-to-primary node distance and the 

secondary-to-secondary node distance are at approximately 90° to each other in the patch, allowing the 

strain in each direction to be directly related to the compressive and tensile strain: 

 

𝜀 =
∆𝐿

𝐿
 5 

𝜈 = |
 𝜀𝑦

 𝜀𝑥
| 6 

 

Figure 5. (a) Plot of the effect on the local 2D cross correlation when atoms are substituted, (b) zoomed 

in area of cross-correlation map for pristine bi layer graphene, (c) Carbon in layer 2 is replaced by 

oxygen, (d) Carbon in layer 2 is replaced by nitrogen (e) Carbon in layer 1 is replaced by nitrogen, (f) 

Carbon in layer 2 is replace by boron, and (g) Carbon in layer 1 is replaced by boron.     
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 In Eq. 5 [37], L is the predicted node-to-node distance based on the average angle of relative rotation 

(4.45°) and ∆L is the difference between L and the measured node-to-node distance. Using Eq. 5, a tensile 

strain of 𝜀𝑥 = 6.78% and a compressive strain of 𝜀𝑦 =1.23% were calculated. Then, using Eq. 6, an 

estimate of the in-plane Poisson’s ratio (𝜈) can be determined as 0.18 for the patch. Using well-converged 

DFT calculations, we find that for both AA- and AB-stacked bilayers, as well as monolayer graphene, the 

in-plane Poisson ratio (𝜈) is 0.19, in agreement with experimental measurements on graphene and graphite 

[38], indicating that there is practically no sensitivity to the number of layers for the in-plane Poisson’s ratio 

in both theory and experiment. 

Given the presence of strain-induced rippling in our sample, the question arises whether the observed 

rippling obeys continuum mechanics. For example, monolayer graphene appears to satisfy [4,5,39] or 

violate continuum mechanics [40,41], depending on the particular geometric setup conditions [42]. The 

continuum mechanics model of strained elastic sheets can be written either in terms of an applied tensile 

strain or in terms of a compressive strain. When uniaxial tensile strain is applied to an elastic sheet of length 

𝐿 and thickness 𝑡, the wavelength (𝜆) and amplitude (𝐴) of rippling are given by [43]: 

 

where 𝜈  is the in-plane Poisson’s ratio and 𝜀  is the applied strain along the length. Likewise, for 

compressive strain of magnitude 𝜀𝑦, the relevant equations are [39]: 

𝜆 = (2𝜋𝐿𝑡)1 2⁄ [3(1 − 𝜈2)𝜀𝑥]−1 4⁄  7 

𝐴 = (𝜈𝐿𝑡)1/2[16𝜀𝑥 (3𝜋2(1 − 𝜈2))⁄ ]
1/4

, 8 

𝜆 = (2𝜋𝐿𝑡)1/2𝜈1/4[3(1 − 𝜈2)𝜀𝑦]
−1/4

  9  

𝐴 = (𝜈𝐿𝑡)1/2[16𝜀𝑦 (3𝜋2(1 − 𝜈2))⁄ ]
1/4

. 4  

 

Figure 6. Displacement of the atoms perpendicular to the imaging-plane from the optimized positions 

produced by DFT for (a) the bottom layer, and (b) the top layer. (c) Atomistic model of the rippling 

relative to the layer separation. 

Page 11 of 18 AUTHOR SUBMITTED MANUSCRIPT - 2DM-103254

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

Equations 7, 8 and 9, 10 are fundamentally related through the in-plane Poisson’s ratio for the magnitude 

of tensile and compressive strains (𝜀𝑦 = 𝜈𝜀𝑥). In the current experimental setup, it is difficult to concretely 

define 𝐿. Furthermore, there is an ambiguity in how to define the thickness of atomically thin materials. 

Therefore, we can use Eqs. 7 and 8 to derive a relationship between 𝜆 and 𝐴 in terms of 𝜀𝑥: 

or Eqs. 9 and 10 to derive such a relationship in terms of 𝜀𝑦: 

Using the average extracted wavelength of 𝜆 = 14.64 ± 0.57 Å with a Poisson’s ratio of 0.19 in Eq. 12 

gives an expected amplitude of 𝐴 = 0.73 ± 0.03 Å. This expected amplitude and our extracted amplitude 

of 𝐴 = 0.75 ± 0.07 Å agree within uncertainty, implying that the observed rippling in bilayer graphene is 

consistent with the continuum theory of elasticity. Previous works have sparked the controversy as to 

whether rippling in graphene does obey [44] or does not obey [40] the continuum theory model; while in 

the present case for bilayer graphene, the rippling does obey the continuum theory. 

Undulations in the z direction in bilayer graphene with a low angle of relative rotation result in a change in 

the separation between the layers that coincides with the intensity change of the moiré pattern [45]. To 

study the z undulations caused by the angle of relative rotation between the two layers of bilayer graphene, 

the distance between the layers (Figure 6a-b) is used (Figure 7a). To measure these undulations in the 

current data, a series of line profiles were taken along a path between the centers of the primary moiré nodes 

in the patch. These line profiles show undulations with a wavelength that matches the primary-to-primary 

node distance and an amplitude of 0.07Å (figure 7b). Semiclassical theory [45] predicts these undulations 

to have an amplitude of ~0.1 Å, which is slightly larger than what is observed in our optimized unit 
cell. An interesting note is that the strain-based rippling along the same line profiles (Figure 7b) 
appears to have the same wavelength and orientation as the moiré rippling; however, the strain 
rippling amplitude is an order of magnitude larger. Due to the moiré undulations and the strain 
rippling being aligned, the moiré-induced undulations would be undetectable without the aid of DFT. 

𝐴 =
𝜆

𝜋
(2𝜈𝜀𝑥)1/2, 5 

𝐴 =
𝜆

𝜋
(2𝜀𝑦)

1/2
. 6 

 

Figure 7. (a) Layer-separation between the two layers from the optimized positions. (b) Layer-

separation (black solid line) and z rippling for the top layer (red dotted line) across the line 

profile shown in (a). 
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This orientation match between the moiré-induced undulations and strain-based rippling might 
simply be a coincidence or an actual correlation. 

 

4. Outlook 

We have introduced a reconstructive analysis methodology to deduce the coordinates in all three spatial 

dimensions of the atoms that cannot resolved from one another in an experimental STEM image. The 

approach is not only able to deduce the xy information that is lost in the STEM image, but also provides 

information in the z direction for which STEM provides little information. The z information clearly shows 

rippling in the direction of strain as would be expected and in line with the continuum model. The method 

relies on the assumption of a defect-free lattice, but, using local-area correlation, it is possible to identify 

the location of potential defect areas. By inserting defects into the lattice computation and then re-

optimizing the lattice, it is possible to identify the defect by optimizing the local correlation map in a self-

consistent manner.  

While we have demonstrated success using a STEM image, the same approach can be performed using 

other atomic-resolution imaging techniques. Scanning tunneling microscopy (STM) could be an ideal 

candidate. STM can resolve individual atoms, but, like STEM, has a “blind spot” preventing full three-

dimensional measurement of positions in bilayer or multi-layer systems. STM has very high resolution in 

the z-direction normal to the surface and good resolution in the xy plane of the surface, but is predominantly 

sensitive only to the outermost layer of atoms. STM provides little information about the lower layer in a 

bi-layer system. A number of atomically-resolved STM studies have identified rippling in both mono- and 

multi-layer graphene [46–48]. The details of the subsurface structure influences the surface layer at a level 

that can be observed by STM, i.e. changes in the vertical positions of atoms located above or between atoms 

below. The present reconstructive-analysis approach, combining data analysis of measured atomic positions 

with DFT modeling should identify the missing subsurface atomic structures and could resolve outstanding 

questions on friction and the origins of rippling. 

 

5. Conclusions 

 

We have demonstrated an approach for the recovery of atomic positions in three dimensions that cannot be 

determined from the raw data alone. Using a STEM image of bilayer graphene as the test case, the xy 

positions of all atoms were recovered and the z positions deduced. The z positions were validated through 

the 2D cross-correlation of the simulated STEM image with a filtered raw-data image. Defects in the bi-

layer graphene sample were detected by the presence of areas of low correlation in the 2D cross-correlation 

map. It is then possible to use the correlation maps to identify the type of defects in a self-constant manner. 

In the present case, a defect was found and identified as a substitutional nitrogen. The z positions show the 

presence of nanometer-scale rippling consistent with the continuum elastic model. Furthermore, we find 

that the angle of relative rotation in the bilayer causes additional moiré-induced undulations in the atomic 

positions. It should be possible to further extend this methodology to other types of atomically-resolved 

microscopy, such as STM. 

Acknowledgements  

 

The authors would like to thank Ivan Vlassiok for growing and providing the initial graphene sample and 

Jason Bonacum for help at the early stages of this project. A portion of this research was conducted at the 

Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. This work was 

supported in part by Department of Energy grant DE-FG02-09ER46554, by National Science Foundation 

Grant DMR-1508433, and by the McMinn Endowment at Vanderbilt University. Supercomputer time was 

Page 13 of 18 AUTHOR SUBMITTED MANUSCRIPT - 2DM-103254

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



provided, in part, by the Extreme Science and Engineering Discovery Environment (XSEDE), which is 

supported by National Science Foundation Grant ACI-1053575. ARL and AYB were supported by the U.S. 

Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering 

Division. 

  

Page 14 of 18AUTHOR SUBMITTED MANUSCRIPT - 2DM-103254

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

References 

[1]  Xu K, Cao P G and Heath J R 2009 Scanning Tunneling Microscopy Characterization of the 

Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers Nano Lett. 9 4446–51 

[2]  Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Neto A H C and Crommie M 

F 2010 Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles 

Science (80-. ). 329 544–7 

[3]  Nicholl R J T, Conley H J, Lavrik N V., Vlassiouk I, Puzyrev Y S, Sreenivas V P, Pantelides S T 

and Bolotin K I 2015 The effect of intrinsic crumpling on the mechanics of free-standing graphene 

Nat. Commun. 6 8789 

[4]  Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Lau C N 2009 Controlled ripple 

texturing of suspended graphene and ultrathin graphite membranes Nat. Nanotechnol. 4 562–6 

[5]  Meng L, Su Y, Geng D, Yu G, Liu Y, Dou R F, Nie J C and He L 2013 Hierarchy of graphene 

wrinkles induced by thermal strain engineering Appl. Phys. Lett. 103 

[6]  Yang L, Niu T, Zhang H, Xu W, Zou M, Xu L, Cao G and Cao A 2017 Self-assembly of 

suspended graphene wrinkles with high pre-tension and elastic property 2D Mater. 4 

[7]  Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar 

R, Fang C, Dellabetta B, Dai W, Li Q, Gilbert M J, Chou F, Samarth N, Hasan M Z, Aikebaier F, 

Pertsova A, Canali C M, Charlebois M, Sénéchal D, Gagnon A M, Tremblay A M S, Wehling T 

O, Lichtenstein A I, Katsnelson M I, Overhauser A W, Yang H, Yang S H, Takahashi S, Maekawa 

S, Parkin S S P, Quay C H L, Weideneder M, Chiffaudel Y, Strunk C, Aprili M, Bistritzer R, 

MacDonald A H, Yamashita T, Takahashi S, Imamura H, Maekawa S, Kulik I 0, Cao Y, Fatemi 

V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P, Aslamazov L G, Larkin A I, 

Ovchinnikov Y N, ANDERSON P W, Bai C, Yang Y, Wehling T O, ŞaşIoǧlu E, Friedrich C, 

Lichtenstein A I, Katsnelson M I, Blügel S, Schüler M, Rösner M, Wehling T O, Lichtenstein A I, 

Katsnelson M I and Yafet Y 2015 Unconventional superconductivity in magic-angle graphene 

superlattices Phys. Rev. B - Condens. Matter Mater. Phys. 108 1–10 

[8]  Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe 

K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Correlated insulator behaviour 

at half-filling in magic-angle graphene superlattices Nature 556 80–4 

[9]  Lin J, Fang W, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J and Pantelides S T 2013 

AC/AB stacking boundaries in bilayer graphene Nano Lett. 13 3262–8 

[10]  Castro E V., Novoselov K S, Morozov S V., Peres N M R, dos Santos J M B L, Nilsson J, Guinea 

F, Geim A K and Neto A H C 2007 Biased Bilayer Graphene: Semiconductor with a Gap Tunable 

by the Electric Field Effect Phys. Rev. Lett. 99 216802 

[11]  O’Hara A, Kahn R E, Zhang Y-Y and Pantelides S T 2017 Defect-mediated leakage in lithium 

intercalated bilayer graphene AIP Adv. 7 45205 

[12]  Zhang Y, Tang T-T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 

2009 Direct observation of a widely tunable bandgap in bilayer graphene Nature 459 820–3 

[13]  Regan W, Alem N, Alemán B, Geng B, Girit Ç, Maserati L, Wang F, Crommie M and Zettl A 

2010 A direct transfer of layer-area graphene Appl. Phys. Lett. 96 113102 

Page 15 of 18 AUTHOR SUBMITTED MANUSCRIPT - 2DM-103254

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



[14]  Mao Y and Zhong J 2008 Structural, electronic and magnetic properties of manganese doping in 

the upper layer of bilayer graphene. Nanotechnology 19 205708 

[15]  Borisevich A Y, Chang H J, Huijben M, Oxley M P, Okamoto S, Niranjan M K, Burton J D, 

Tsymbal E Y, Chu Y H, Yu P, Ramesh R, Kalinin S V. and Pennycook S J 2010 Suppression of 

Octahedral Tilts and Associated Changes in Electronic Properties at Epitaxial Oxide 

Heterostructure Interfaces Phys. Rev. Lett. 105 87204 

[16]  Ishikawa R, Lupini A R, Hinuma Y and Pennycook S J 2015 Large-angle illumination STEM: 

Toward three-dimensional atom-by-atom imaging Ultramicroscopy 151 122–9 

[17]  Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, 

Own C S, Szilagyi Z S, Oxley M P, Pantelides S T and Pennycook S J 2010 Atom-by-atom 

structural and chemical analysis by annular dark-field electron microscopy Nature 464 571–4 

[18]  Shen X, Hernández-Pagan E A, Zhou W, Puzyrev Y S, Idrobo J-C, Macdonald J E, Pennycook S 

J and Pantelides S T 2014 Interlaced crystals having a perfect Bravais lattice and complex 

chemical order revealed by real-space crystallography Nat. Commun. 5 5431 

[19]  Zhou W, Lee J, Nanda J, Pantelides S T, Pennycook S J and Idrobo J-C 2012 Atomically 

localized plasmon enhancement in monolayer graphene Nat. Nanotechnol. 7 161–5 

[20]  Wijk M M van, Schuring A, Katsnelson M I and Fasolino A 2015 Relaxation of moiré patterns 

for slightly misaligned identical lattices: graphene on graphite 2D Mater. 2 34010 

[21]  Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P and Smirnov S 2013 Large scale 

atmospheric pressure chemical vapor deposition of graphene Carbon N. Y. 54 58–67 

[22]  Anon 2um holes with 2um spacing (657-200-AU QUANTIFOIL SUBSTRATE, 200M)No Title 

[23]  Krivanek O L, Corbin G J, Dellby N, Elston B F, Keyse R J, Murfitt M F, Own C S, Szilagyi Z S 

and Woodruff J W 2008 An electron microscope for the aberration-corrected era Ultramicroscopy 

108 179–95 

[24]  Witkin A 1984 Scale-space filtering: A new approach to multi-scale description ICASSP ’84. 

IEEE Int. Conf. Acoust. Speech, Signal Process. 9 150–3 

[25]  Ester M, Kriegel H P, Sander J and Xu X 1996 A Density-Based Algorithm for Discovering 

Clusters in Large Spatial Databases with Noise Proc. 2nd Int. Conf. Knowl. Discov. Data Min. 

226–31 

[26]  Nishiyima Y and Oster G 1964 Moiré Patterns: Their Application to Refractive Index and 

Refractive Index Gradient Measurements J. Opt. Soc. Am. 54 1–5 

[27]  Somnath S, Smith C R, Kalinin S V., Chi M, Borisevich A, Cross N, Duscher G and Jesse S 2018 

Feature extraction via similarity search: application to atom finding and denoising in electron and 

scanning probe microscopy imaging Adv. Struct. Chem. Imaging 4 3 

[28]  McNemar Q 1947 Note on the sampling error of the difference between correlated proportions or 

percentages Psychometrika 12 153–7 

[29]  Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations 

using a plane-wave basis set Phys. Rev. B 54 11169–86 

[30]  Perdew J P, Burke K and Ernzerhof M 1997 Erratum: Generalized gradient approximation made 

simple (Physical Review Letters (1996) 77 (3865)) Phys. Rev. Lett. 78 1396 

Page 16 of 18AUTHOR SUBMITTED MANUSCRIPT - 2DM-103254

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



[31]  Grimme S, Antony J, Ehrlich S and Krieg H 2010 A consistent and accurate ab initio 

parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. 

Chem. Phys. 132 154104 

[32]  Becke A D and Johnson E R 2005 A density-functional model of the dispersion interaction J. 

Chem. Phys. 123 154101 

[33]  Lebedeva I V., Lebedev A V., Popov A M and Knizhnik A A 2017 Comparison of performance 

of van der Waals-corrected exchange-correlation functionals for interlayer interaction in graphene 

and hexagonal boron nitride Comput. Mater. Sci. 128 45–58 

[34]  Blöchl G, Joubert D, Savrasov S Y, Humphreys C J, Sutton A P, Monconduit L, Mahdoud A, 

Dominko R, Tendeloo G Van, Hermann R P, Tarascon J-M, Komaba S, Gonbeau D, Novak P, 

Tendeloo G Van, Hermann R P and Tarascon J-M 1994 Projector augmented-wave method. Phys. 

Rev. B. Condens. Matter 50 17953–79 

[35]  Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave 

method Phys. Rev. B 59 1758–75 

[36]  Koch C 2002 Determination of core structure periodicity and point defect density along 

dislocations (Arizona State University) 

[37]  Fung Y C 1965 Foundation of Solid Mechanics 

[38]  Politano A and Chiarello G 2015 Probing the Young’s modulus and Poisson’s ratio in 

graphene/metal interfaces and graphite: a comparative study Nano Res. 8 1847–56 

[39]  Wang Z and Devel M 2011 Periodic ripples in suspended graphene Phys. Rev. B 83 125422 

[40]  Tapasztó L, Dumitrică T, Kim S J, Nemes-Incze P, Hwang C and Biró L P 2012 Breakdown of 

continuum mechanics for nanometre-wavelength rippling of graphene Nat. Phys. 8 739–42 

[41]  Bai K-K, Zhou Y, Zheng H, Meng L, Peng H, Liu Z, Nie J-C and He L 2014 Creating One-

Dimensional Nanoscale Periodic Ripples in a Continuous Mosaic Graphene Monolayer Phys. Rev. 

Lett. 113 86102 

[42]  Liu F and Wang T C 2016 Quantized phenomena in graphene nanoripples Carbon N. Y. 96 1175–

80 

[43]  Cerda E, Mahadevan L, Moon M-W, Oh K H, Kim K-S, Allen H G, Biot M A, Biot M A, 

Bowden N, Brittain S, Evans A G, Hutchinson J W, Whitesides G M, Cerda E, Mahadevan L, 

Chan E P, Smith E J, Hayward R C, Crosby A J, Chen X, Hutchinson J W, Efimenko K, Genzer J, 

Groenewold J, Gough G S, Elam C F, Bruyne N A de, Hoff N J, Mautner S E, Huang R, Huang Z 

Y, Hong W, Suo Z, Huck W T S, Kim K-S, Kim J, Kim S O, Earmme Y Y, Kim K-S, Lee D, 

Triantafyllidis N, Barber J R, Thouless M D, Moon M-W, Ogden R W, Ogden R W, Rahmawan 

Y, Moon M-W, Kim K-S, Lee K R, Suh K Y, Rivlin R S, Röll K, Shield T W, Kim K-S, Shield R 

T, Song J, Stafford C M, Steigmann D J, Ogden R W, Timoshenko S P, Gere J M, Yoo S H, 

Cohen C and Hui C-Y 2003 Geometry and physics of wrinkling. Phys. Rev. Lett. 90 74302 

[44]  Wei X, Fragneaud B, Marianetti C A and Kysar J W 2009 Nonlinear elastic behavior of graphene: 

Ab initio calculations to continuum description Phys. Rev. B 80 205407 

[45]  Bistritzer R and MacDonald A H 2011 Moire bands in twisted double-layer graphene Proc. Natl. 

Acad. Sci. 108 12233–7 

[46]  Choi J S, Kim J-S, Byun I-S, Lee D H, Lee M J, Park B H, Lee C, Yoon D, Cheong H, Lee K H, 

Page 17 of 18 AUTHOR SUBMITTED MANUSCRIPT - 2DM-103254

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Son Y-W, Park J Y and Salmeron M 2011 Friction Anisotropy-Driven Domain Imaging on 

Exfoliated Monolayer Graphene Science (80-. ). 333 607–10 

[47]  Gallagher P, Lee M, Amet F, Maksymovych P, Wang J, Wang S, Lu X, Zhang G, Watanabe K, 

Taniguchi T and Goldhaber-Gordon D 2016 Switchable friction enabled by nanoscale self-

assembly on graphene Nat. Commun. 7 10745 

[48]  Zan R, Bangert U, Muryn C, Mattocks P, Hamilton B and Novoselov K S 2012 Scanning 

Tunnelling Microscopy of Suspended Graphene J. Phys. Conf. Ser. 371 12070 

 

Page 18 of 18AUTHOR SUBMITTED MANUSCRIPT - 2DM-103254

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


