120 research outputs found
Lithofacies uncertainty modeling in a siliciclastic reservoir setting by incorporating geological contacts and seismic information
Deterministic modeling lonely provides a unique boundary layout, depending on the geological interpretation or interpolation
from the hard available data. Changing the interpreter’s attitude or interpolation parameters leads to displacing the
location of these borders. In contrary, probabilistic modeling of geological domains such as lithofacies is a critical aspect
to providing information to take proper decision in the case of evaluation of oil reservoirs parameters, that is, applicable
for quantification of uncertainty along the boundaries. These stochastic modeling manifests itself dramatically beyond this
occasion. Conventional approaches of probabilistic modeling (object and pixel-based) mostly suffers from consideration
of contact knowledge on the simulated domains. Plurigaussian simulation algorithm, in contrast, allows reproducing the
complex transitions among the lithofacies domains and has found wide acceptance for modeling petroleum reservoirs.
Stationary assumption for this framework has implications on the homogeneous characterization of the lithofacies. In this
case, the proportion is assumed constant and the covariance function as a typical feature of spatial continuity depends only
on the Euclidean distances between two points. But, whenever there exists a heterogeneity phenomenon in the region, this
assumption does not urge model to generate the desired variability of the underlying proportion of facies over the domain.
Geophysical attributes as a secondary variable in this place, plays an important role for generation of the realistic contact
relationship between the simulated categories. In this paper, a hierarchical plurigaussian simulation approach is used to construct
multiple realizations of lithofacies by incorporating the acoustic impedance as soft data through an oil reservoir in Iran.This research was funded by the National Elites Foundation of Iran in collaboration with research Institute Petroleum of Industry in Iran under the project number of 9265005
Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter
The ensemble Kalman filter (EnKF) is now widely used in diverse disciplines to estimate model parameters and update model states by integrating observed data. The EnKF is known to perform optimally only for multi-Gaussian distributed states and parameters. A new approach, the normal-score EnKF (NS-EnKF), has been recently proposed to handle complex aquifers with non-Gaussian distributed parameters. In this work, we aim at investigating the capacity of the NS-EnKF to identify patterns in the spatial distribution of the model parameters (hydraulic conductivities) by assimilating dynamic observations in the absence of direct measurements of the parameters themselves. In some situations, hydraulic conductivity measurements (hard data) may not be available, which requires the estimation of conductivities from indirect observations, such as piezometric heads. We show how the NS-EnKF is capable of retrieving the bimodal nature of a synthetic aquifer solely from piezometric head data. By comparison with a more standard implementation of the EnKF, the NS-EnKF gives better results with regard to histogram preservation, uncertainty assessment, and transport predictions. © 2011 International Association for Mathematical Geosciences.The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. The first author appreciates the financial aid from China Scholarship Council (CSC No. [2007]3020).Zhou, H.; Li, L.; Hendricks Franssen, H.; Gómez-Hernández, JJ. (2012). Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter. Mathematical Geosciences. 44(2):169-185. https://doi.org/10.1007/s11004-011-9372-3S169185442Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188Bertino L, Evensen G, Wackernagel H (2003) Sequential data assimilation techniques in oceanography. Int Stat Rev 71(2):223–241Burgers G, Jan van Leeuwen P, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126(6):1719–1724Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29:1107–1122Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162Evensen G (2007) Data assimilation: the ensemble Kalman filter. Springer, Berlin, 279 ppFernàndez-Garcia D, Illangasekare T, Rajaram H (2005) Differences in the scale dependence of dispersivity and retardation factors estimated from forced-gradient and uniform flow tracer tests in three-dimensional physically and chemically heterogeneous porous media. Water Resour Res 41(3):W03012Gómez-Hernández JJ, Journel AG (1993) Joint sequential simulation of multi-Gaussian fields. In: Soares A (ed) Geostatistics Tróia ’92, vol 1. Kluwer Academic, Dordrecht, pp 85–94Gómez-Hernández JJ, Wen XH (1998) To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61Gu Y, Oliver DS (2006) The ensemble Kalman filter for continuous updating of reservoir simulation models. J Energy Resour Technol 128:79–87Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. Tech rep. Open-File Report 00-92, U.S. Department of the Interior, U.S. Geological Survey. Reston, Virginia, 121 ppHendricks Franssen HJ, Kinzelbach W (2008) Real-time groundwater flow modeling with the Ensemble Kalman Filter: joint estimation for states and parameters and the filter inbreeding problem. Water Resour Res 44:W09408Hendricks Franssen HJ, Kinzelbach W (2009) Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. J Hydrol 365(3–4):261–274Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137Journel AG, Deutsch CV (1993) Entropy and spatial disorder. Math Geol 25(3):329–355Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macrodispersion experiment (MADE) site, Columbus air force base, Mississippi (USA). J Hydrol 404(3–4):278–293Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34(4):478–489Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147Naevdal G, Johnsen L, Aanonsen S, Vefring E (Mar. 2005) Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J 10(1):66–74Pardo-Igúzquiza E, Dowd PA (2003) CONNEC3D: a computer program for connectivity analysis of 3D random set models. Comput Geosci 29:775–785Schöniger A, Nowak W, Hendricks Franssen HJ (2011) Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography. Water Resour Res (submitted)Simon E, Bertino L (2009) Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean Sci 5:495–510Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London. 181 ppStrébelle S 2000. Sequential simulation drawing structures from training images. PhD thesis, Stanford University. 187 ppStrebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21Wen X, Chen W (2006) Real-time reservoir model updating using ensemble Kalman filter: the confirming approach. SPE J 11(4):431–442Wen X, Chen W (2007) Some practical issues on real time reservoir updating using ensemble Kalman filter. SPE J 12(2):156–166Zhou H, Gómez-Hernández JJ, Hendricks Franssen H-J, Li L (2011) An approach to handling non-gaussianity of parameters and state variables in ensemble Kalman filtering. Adv Water Resour 34(7):844–864Zinn B, Harvey C (2003) When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39(3):105
Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium)
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.status: publishe
Direct multiple-point geostatistical simulation of edge properties for modeling thin irregularly-shaped surfaces
Thin irregularly-shaped surfaces such as clay drapes often have a major control on flow and transport in heterogeneous porous media. Clay drapes are often complex curvilinear 3-dimensional surfaces and display a very complex spatial distribution. Variogram-based stochastic approaches are often also not able to describe the spatial distribution of clay drapes since complex, curvilinear, continuous and interconnected structures cannot be characterized using only two-point statistics. Multiple-point geostatistics aims to overcome the limitations of the variogram. The premise of multiple-point geostatistics is to move beyond two-point correlations between variables and to obtain (cross) correlation moments at three or more locations at a time using "training images" to characterize the patterns of geological heterogeneity. Multiple-point geostatistics is able to reproduce thin irregularly-shaped surfaces such as clay drapes but is often computationally intensive. To capture the thin surfaces, a small grid cell size should be adopted for the training image. This results in large training images and a large search template size and thus a large CPU and RAM demand (Huysmans and Dassargues, 2009)
- …