1,796 research outputs found
Space and lunar-based optical telescopes
The growth of space observatories, especially at optical wavelengths, during the next several decades is considered. It is concluded that large aperture optical telescopes on the Moon, possibly constructed of lunar glasses, will be very competitive with and in some instances superior to Earth orbiting telescopes
Accretion shock geometries in the magnetic variables
The first self consistent shock models for the AM Herculis-type systems successfully identified the dominant physical processes and their signatures. These homogenous shock models predict unpolarized, Rayleigh-Jeans optical spectra with sharp cutoffs and rising polarizations as the shocks become optically thin in the ultraviolet. However, the observed energy distributions are generally flat with intermediate polarizations over a broad optical band. These and other observational evidence support a non-homogenous accretion profile which may extend over a considerable fraction of the stellar surface. Both the fundamental assumptions underlying the canonical 1-D shock model and the extension of this model to inhomogenous accretion shocks were identified, for both radial and linear structures. The observational evidence was also examined for tall shocks and little evidence was found for relative shock heights in excess of h/R(1) greater than or equal to 0.1. For several systems, upper limits to the shock height can be obtained from either x ray or optical data. These lie in the region h/R(1) is approximately 0.01 and are in general agreement with the current physical picture for these systems. The quasi-periodic optical variations observed in several magnetic variables may eventually prove to be a major aid in further understanding their accretion shock geometries
Computer programs for calculating potential flow in propulsion system inlets
Calculational procedure evolved in process of designing inlets. Douglas axisymmetric potential flow program called EOD calculates incompressible potential flow about arbitrary bodies. Program SCIRCL generates input for EOD from inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest and applied compressibility correction
The Lyman Break Galaxies: their Progenitors and Descendants
We study the evolution of Lyman Break Galaxies (LBGs) from z=5 to z=0 by
tracing the merger trees of galaxies in a large-scale hydrodynamic simulation
based on a Lambda cold dark matter model. In particular, we emphasize on the
range of properties of the sample selected by the rest-frame V band luminosity,
in accordance with recent near-IR observations. The predicted rest-frame V band
luminosity function agrees well with the observed one when dust extinction is
taken into account. The stellar content and the star formation histories of
LBGs are also studied. We find that the LBGs intrinsically brighter than
Mv=-21.0 at z=3 have stellar masses of at least 10^9\Msun, with a median of
10^{10}h^{-1}\Msun. The brightest LBGs (Mv<-23) at z=3 merge into
clusters/groups of galaxies at z=0, as suggested from clustering studies of
LBGs. Roughly one half of the galaxies with -23<Mv<-22 at z=3 fall into
groups/clusters, and the other half become typical L* galaxies at z=0 with
stellar mass of ~10^{11}\Msun. Descendants of LBGs at the present epoch have
formed roughly 30% of their stellar mass by z=3, and the half of their current
stellar population is 10 Gyr old, favoring the scenario that LBGs are the
precursors of the present day spheroids. We find that the most luminous LBGs
have experienced a starburst within 500 Myr prior to z=3, but also have formed
stars continuously over a period of 1 Gyr prior to z=3 when all the star
formation in progenitors is coadded. We also study the evolution of the mean
stellar metallicity distribution of galaxies, and find that the entire
distribution shifts to lower metallicity at higher redshift. The observed
sub-solar metallicity of LBGs at z=3 is naturally predicted in our simulation.Comment: 29 pages, including 11 figures, ApJ in press. One reference adde
Theory of plasmon-enhanced high-harmonic generation in the vicinity of metal nanostructures in noble gases
We present a semiclassical model for plasmon-enhanced high-harmonic
generation (HHG) in the vicinity of metal nanostructures. We show that both the
inhomogeneity of the enhanced local fields and electron absorption by the metal
surface play an important role in the HHG process and lead to the generation of
even harmonics and to a significantly increased cutoff. For the examples of
silver-coated nanocones and bowtie antennas we predict that the required
intensity reduces by up to three orders of magnitudes and the HHG cutoff
increases by more than a factor of two. The study of the enhanced high-harmonic
generation is connected with a finite-element simulation of the electric field
enhancement due to the excitation of the plasmonic modes.Comment: 4 figure
A framework for molecular biology databases integration using context graph keying.
This paper proposed a novel framework for integrating public domain molecular biology databases with the aid of a context graph. A context graph is used to map data in order to establish an integration domain for the participating multi-resource database federation. Data are presented in a consolidated form upon retrieval from the multiple databases. The approach presented in this paper is novel in the sense that, it can be implemented within a component database and can initiate data consolidation collected from multiple sources without users' intervention. The approach has received considerable interest from the research community
Integration of biological data resources using image object keying.
This paper proposes a novel concept of ‘image object keying'. The work builds on earlier research in this area and shows how the 3D structure of a protein can be retrieved interactively from a gel electrophoresis protein spot. It uses intelligent image matching operations like the Hough Transform and Edge Detection techniques. Unique aspects are that searches may be initiated from multiple biological resources but with the results being integrated into a single page. A significant outcome of this work is that it enables researchers to search the database without the need to write and complex script
The effect of audio cues and sound source stimuli on the perception of approaching objects
Objects that move in depth on an approaching trajectory (looming) are often encountered in both the real and virtual worlds. Examples include navigating oncoming traffic, and sporting and gaming activities where judgements are made to avoid or attack approaching objects. How people react to looming objects may impact on their survival and progression in the real, virtual, and gaming worlds, and relies on a person’s ability to precisely interpret movement and depth cues. Psychological studies investigating auditory looming often depict an object’s movement using simple audio cues (primarily amplitude increase) which are applied to tones (often sine or triangle waves) which are not normally encountered in the natural world. Whilst these studies provide valuable information about human perception and responses, technological advances allow us to present complex auditory stimuli with a range of audio cues and real-world sound sources, and to collect measurements on human perception and responses to ecologically valid stimuli
- …