196 research outputs found

    Photometry of SN 2002ic and Implications for the Progenitor Mass-Loss History

    Full text link
    We present new pre-maximum and late-time optical photometry of the Type Ia/IIn supernova 2002ic. These observations are combined with the published V-band magnitudes of Hamuy et al. (2003) and the VLT spectrophotometry of Wang et al. (2004) to construct the most extensive light curve to date of this unusual supernova. The observed flux at late time is significantly higher relative to the flux at maximum than that of any other observed Type Ia supernova and continues to fade very slowly a year after explosion. Our analysis of the light curve suggests that a non-Type Ia supernova component becomes prominent ∌20\sim20 days after explosion. Modeling of the non-Type Ia supernova component as heating from the shock interaction of the supernova ejecta with pre-existing circumstellar material suggests the presence of a ∌1.71015\sim1.7 10^{15} cm gap or trough between the progenitor system and the surrounding circumstellar material. This gap could be due to significantly lower mass-loss ∌15(vw/10km/s)−1\sim15 (v_w/10 km/s)^{-1} years prior to explosion or evacuation of the circumstellar material by a low-density fast wind. The latter is consistent with observed properties of proto-planetary nebulae and with models of white-dwarf + asymptotic giant branch star progenitor systems with the asymptotic giant branch star in the proto-planetary nebula phase.Comment: accepted for publication in Ap

    Late-Time Optical and UV Spectra of SN 1979C and SN 1980K

    Get PDF
    A low-dispersion Keck I spectrum of SN 1980K taken in August 1995 (t = 14.8 yr after explosion) and a November 1997 MDM spectrum (t = 17.0 yr) show broad 5500 km s^{-1} emission lines of H\alpha, [O I] 6300,6364 A, and [O II] 7319,7330 A. Weaker but similarly broad lines detected include [Fe II] 7155 A, [S II] 4068,4072 A, and a blend of [Fe II] lines at 5050--5400 A. The presence of strong [S II] 4068,4072 A emission but a lack of [S II] 6716,6731 A emission suggests electron densities of 10^{5-6} cm^{-3}. From the 1997 spectra, we estimate an H\alpha flux of 1.3 \pm 0.2 \times 10^{-15} erg cm^{-2} s^{-1} indicating a 25% decline from 1987--1992 levels during the period 1994 to 1997, possibly related to a reported decrease in its nonthermal radio emission.Comment: 21 pages, 8 figures, submitted to the Astronomical Journa

    Helium Emission in the Type Ic SN 1999cq

    Get PDF
    We present the first unambiguous detection of helium emission lines in spectra of Type Ic supernovae (SNe Ic). The presence of He I lines, with full width at half maximum ~ 2000 km/s, and the distinct absence of any other intermediate-width emission (e.g., Halpha), implies that the ejecta of SN Ic 1999cq are interacting with dense circumstellar material composed of almost pure helium. This strengthens the argument that the progenitors of SNe Ic are core-collapse events in stars that have lost both their hydrogen and helium envelopes, either through a dense wind or mass-transfer to a companion. In this way, SN 1999cq is similar to supernovae such as SN 1987K and SN 1993J that helped firmly establish a physical connection between Type Ib and Type II supernovae. The light curve of SN 1999cq is very fast, with an extremely rapid rise followed by a quick decline. SN 1999cq is also found to exhibit a high level of emission at blue wavelengths (< 5500 A), likely resulting from either an unusually large amount of iron and iron-group element emission or uncharacteristically low reddening compared with other SNe Ic.Comment: 17 pages (AASTeX V5.0), 4 figures, accepted for publication in the Astronomical Journa

    Evidence for Asphericity in the Type IIn Supernova 1998S

    Get PDF
    We present optical spectropolarimetry obtained at the Keck-II 10-m telescope on 1998 March 7 UT along with total flux spectra spanning the first 494 days after discovery (1998 March 2 UT) of the peculiar type IIn supernova (SN) 1998S. The SN is found to exhibit a high degree of linear polarization, implying significant asphericity for its continuum-scattering environment. Prior to removal of the interstellar polarization, the polarization spectrum is characterized by a flat continuum (at p ~ 2%) with distinct changes in polarization associated with both the broad (FWZI >= 20,000 km/s) and narrow (unresolved, FWHM < 300 km/s) line emission seen in the total flux spectrum. When analyzed in terms of a polarized continuum with unpolarized broad-line recombination emission, an intrinsic continuum polarization of p ~ 3% results (the highest yet found for a SN), suggesting a global asphericity of >= 45% from the oblate, electron-scattering dominated models of Hoflich (1991). The smooth, blue continuum evident at early times is shown to be inconsistent with a reddened, single-temperature blackbody, instead having a color temperature that increases with decreasing wavelength. Broad emission-line profiles with distinct blue and red peaks are seen in the total flux spectra at later times, perhaps suggesting a disk-like or ring-like morphology for the dense (n_e ~ 10^7 cm^{-3}) circumstellar medium. Implications of the circumstellar scattering environment for the spectropolarimetry are discussed, as are the effects of uncertain removal of interstellar polarization.Comment: 25 pages + 2 tables + 14 figures, Submitted to The Astrophysical Journa

    Identification of the Red Supergiant Progenitor of Supernova 2005cs: Do the Progenitors of Type II-P Supernovae Have Low Mass?

    Full text link
    The stars that end their lives as supernovae (SNe) have been directly observed in only a handful of cases, due mainly to the extreme difficulty in identifying them in images obtained prior to the SN explosions. Here we report the identification of the progenitor for the recent Type II-plateau (core-collapse) SN 2005cs in pre-explosion archival images of the Whirlpool Galaxy (M51) obtained with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). From high-quality ground-based images of the SN from the Canada-France-Hawaii Telescope, we precisely determine the position of the SN and are able to isolate the SN progenitor to within 0".04 in the HST/ACS optical images. We further pinpoint the SN location to within 0".005 from HST/ACS ultraviolet images of the SN, confirming our progenitor identification. From photometry of the SN progenitor obtained with the pre-SN ACS images, and also limits to its brightness in pre-SN HST/NICMOS images, we infer that the progenitor is a red supergiant star of spectral type K0--M3, with initial mass 7--9 Msun. We also discuss the implications of the SN 2005cs progenitor identification and its mass estimate. There is an emerging trend that the most common Type II-plateau SNe originate from low-mass supergiants 8--15 Msun.Comment: Submitted to ApJ. A high resolution version can be found at http://astron.berkeley.edu/~weidong/sn05cs.p

    A Comparative Study of the Absolute-Magnitude Distributions of Supernovae

    Get PDF
    The Asiago Supernova Catalog is used to carry out a comparative study of supernova absolute-magnitude distributions. An overview of the absolute magnitudes of the supernovae in the current observational sample is presented, and the evidence for subluminous and overluminous events is examined. The fraction of supernovae that are underluminous (M_B > -15) appears to be higher (perhaps much higher) than one fifth but it remains very uncertain. The fraction that are overluminous (M_B < -20) is lower (probably much lower) than 0.01. The absolute-magnitude distributions for each supernova type, restricted to events within 1 Gpc, are compared. Although these distributions are affected by observational bias in favor of the more luminous events, they are useful for comparative studies. We find mean absolute blue magnitudes (for H_0=60) of -19.46 for normal Type Ia supernovae (SNe Ia), -18.04 for SNe Ibc, -17.61 and -20.26 for normal and bright SNe Ibc considered separately, -18.03 for SNe II-L, -17.56 and -19.27 for normal and bright SNe II-L considered separately, -17.00 for SNe II-P, and -19.15 for SNe IIn.Comment: 27 pages, accepted for publication by the Astronomical Journal (Feb. 2002

    Evidence of Asymmetry in SN 2007rt, a Type IIn Supernova

    Get PDF
    An optical photometric and spectroscopic analysis of the slowly-evolving Type IIn SN2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in Type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Halpha P-Cygni profile, the absorption component of which has a width of 128 km/s. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.Comment: Submitted to A&A on 4/2/2009. Accepted by A&A on 17/5/2009.15 pages plus 3 pages of online materia

    The MACHO Project: Microlensing Results from 5.7 Years of LMC Observations

    Get PDF
    We report on our search for microlensing towards the Large Magellanic Cloud (LMC). Analysis of 5.7 years of photometry on 11.9 million stars in the LMC reveals 13 - 17 microlensing events. This is significantly more than the ∌\sim 2 to 4 events expected from lensing by known stellar populations. The timescales (\that) of the events range from 34 to 230 days. We estimate the microlensing optical depth towards the LMC from events with 2 < \that < 400 days to be 1.2 ^{+0.4}_ {-0.3} \ten{-7},withanadditional20systematicerror.ThespatialdistributionofeventsismildlyinconsistentwithLMC/LMCdiskself−lensing,butisconsistentwithanextendedlensdistributionsuchasaMilkyWayorLMChalo.InterpretedinthecontextofaGalacticdarkmatterhalo,consistingpartiallyofcompactobjects,amaximumlikelihoodanalysisgivesaMACHOhalofractionof20witha95the95Galactichalopopulation,themostlikelyMACHOmassisbetween, with an additional 20% to 30% of systematic error. The spatial distribution of events is mildly inconsistent with LMC/LMC disk self-lensing, but is consistent with an extended lens distribution such as a Milky Way or LMC halo. Interpreted in the context of a Galactic dark matter halo, consisting partially of compact objects, a maximum likelihood analysis gives a MACHO halo fraction of 20% for a typical halo model with a 95% confidence interval of 8% to 50%. A 100% MACHO halo is ruled out at the 95% C.L. for all except our most extreme halo model. Interpreted as a Galactic halo population, the most likely MACHO mass is between 0.15 \msunand and 0.9 \msun$, depending on the halo model, and the total mass in MACHOs out to 50 kpc is found to be 9+4-3 10^{10} msun, independent of the halo model. These results are marginally consistent with our previous results, but are lower by about a factor of two. Besides a larger data set, this work also includes an improved efficiency determination, improved likelihood analysis, and more thorough testing of systematic errors, especially with respect to the treatment of potential backgrounds to microlensing, such as supernovae in galaxies behind the LMC. [Abridged]Comment: 53 pages, Latex with 12 postscript figures, submitted to Ap
    • 

    corecore