93 research outputs found

    Verkalkung der Falx cerebri: Ein pathognomonisches Zeichen beim Gorlin-Goltz-Syndrom

    Get PDF
    Zusammenfassung: Hintergrund: Das Gorlin-Goltz-Syndrom (syn. Basalzellnävussyndrom) ist ein autosomal-dominant vererbtes Krankheitsbild, das sich in charakteristischer Weise anhand von Keratozysten der Kiefer, multiplen Basaliomen, skelettalen Deformationen und intrakraniellen Kalzifizierungen manifestiert. Methode: In der vorliegenden Studie wurden 4787 Röntgenaufnahmen mit okzipitomentalem Strahlengang aus dem Archiv der Klinik für Zahn-, Mund- und Kieferheilkunde der Christian-Albrechts-Universität Kiel auf das Vorliegen von Kalzifikationen im Bereich der Falx cerebri geprüft. Ergebnisse: Dabei kristallisierten sich charakteristische Erscheinungsbilder dieser Abweichungen heraus, die 4 lamellaren Strukturgruppen zugeordnet werden konnten. Die Strukturen der Gruppe4 konnten nur bei Gorlin-Goltz-Syndrom-Patienten gefunden werden und unterschieden sich in Form und Ausmaß von den restlichen 3Gruppen. Schlussfolgerung: Das plurilamellare Erscheinungsbild dieser Gruppe konnte als pathognomonisches Zeichen für das Basalzellnävussyndrom gewertet werde

    Mid-infrared passively switched pulsed dual wavelength Ho3+ -doped fluoride fiber laser at 3 μm and 2 μm

    Get PDF
    Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas

    Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions

    Get PDF
    Enormous research effort has been put into optimizing organic-based opto-electronic systems for efficient generation of free charge carriers. This optimization is mainly due to typically high dissociation energy (0.1-1 eV) and short diffusion length (10 nm) of excitons in organic materials. Inherently, interplay of microscopic structural, chemical, and opto-electronic properties plays crucial role. We show that employing and combining advanced scanning probe techniques can provide us significant insight into the correlation of these properties. By adjusting parameters of contact- and tapping-mode atomic force microscopy (AFM), we perform morphologic and mechanical characterizations (nanoshaving) of organic layers, measure their electrical conductivity by current-sensing AFM, and deduce work functions and surface photovoltage (SPV) effects by Kelvin force microscopy using high spatial resolution. These data are further correlated with local material composition detected using micro-Raman spectroscopy and with other electronic transport data. We demonstrate benefits of this multi-dimensional characterizations on (i) bulk heterojunction of fully organic composite films, indicating differences in blend quality and component segregation leading to local shunts of photovoltaic cell, and (ii) thin-film heterojunction of polypyrrole (PPy) electropolymerized on hydrogen-terminated diamond, indicating covalent bonding and transfer of charge carriers from PPy to diamond

    Piezosurgery in implant dentistry

    No full text
    Stefan Stübinger,1 Andres Stricker,2 Britt-Isabelle Berg3,4 1Hightech Research Center of Cranio-maxillofacial Surgery, University of Basel, Allschwil, Switzerland; 2Private Practice, Konstanz, Germany; 3Department of Cranio-maxillofacial Surgery, University Hospital Basel, Basel, Switzerland; 4Division of Oral and Maxillofacial Radiology, Columbia University Medical Center, New York, NY, USA Abstract: Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. Keywords: implantology, piezoelectric device, piezosurgery, maxillary sinus elevation, bone grafting, osteotomy, edentulous ridge splittin

    Erbium-doped yttrium aluminium garnet laser–assisted access osteotomy for maxillary sinus elevation: a human and animal cadaver study

    Full text link
    OBJECTIVE: To evaluate the usability of a variable square pulse (VSP) erbium-doped yttrium aluminium garnet (Er:YAG) laser for a lateral access osteotomy to the maxillary sinus in the course of a sinus elevation procedure. MATERIALS AND METHODS: In six formalin-fixed human heads and six fresh sheep heads, a VSP Er:YAG laser was used to perform a bilateral maxillary access osteotomy. For the osteotomies, the Er:YAG laser was applied with a pulse energy of 1000 mJ, a pulse duration of 300 mus, and a frequency of 12 Hz. The spot size was 0.9 mm, and the handpiece was kept approximately 10 mm from the bone surface. RESULTS: In all 24 sites investigated, the Er:YAG laser osteotomy was possible without any visible carbonization or thermal damage. The average time required for laser osteotomy for 12 standardized rectangular lateral windows in human cadavers was 39 s. No anatomical structures limited laser osteotomy, yet a critical evaluation of any membrane perforations was not possible because the postmortem fixation method caused partial detachment and fractional destruction. Laser-access osteotomy in six fresh sheep heads (12 sites) revealed major disruptions and perforations (<8 mm) of the sinus membrane (100%). CONCLUSION: Even though VSP Er:YAG laser osteotomy showed convincing results for efficient bone cutting without thermal damage, applied laser parameters do not seem to be practicable for any clinical sinus elevation procedure. Missing depth control resulted in uncontrollable severe damage of the underlying membrane

    Palatal piezosurgical window osteotomy for maxillary sinus augmentation

    Full text link
    This technical note describes a new surgical technique for a palatal approach to the maxillary sinus for a vertical augmentation prior to dental implant placement. In 12 fully or partially edentulous patients (seven women, five men), 16 palatal sinus elevations were performed. After elevation of palatal full-thickness flap a rectangular access window was cut with a piezosurgical device. The raised sinus cavity was augmented with a synthetic nano-structured hydroxyapatite-based graft material. No harm occurred to the greater palatine artery or the sinus membrane. The vestibular and periimplant gingiva were preserved and there was no disharmonious soft tissue distortion or massive scar formation. Swelling and bleeding were minimal. Primary stability was achieved for all but one implant. This technique may be an alternative to other sinus augmentation approaches in cases where enough transversal width of the posterior alveolar crest is available

    Osseointegration of titanium implants functionalised with phosphoserine-tethered poly(epsilon-lysine) dendrons: a comparative study with traditional surface treatments in sheep

    Full text link
    The aim of this study was to analyse the osseointegrative potential of phosphoserine-tethered dendrons when applied as surface functionalisation molecules on titanium implants in a sheep model after 2 and 8 weeks of implantation. Uncoated and dendron-coated implants were implanted in six sheep. Sandblasted and etched (SE) or porous additive manufactured (AM) implants with and without additional dendron functionalisation (SE-PSD; AM-PSD) were placed in the pelvic bone. Three implants per group were examined histologically and six implants were tested biomechanically. After 2 and 8 weeks the bone-to-implant contact (BIC) total values of SE implants (43.7±12.2; 53.3±9.0%) and SE-PSD (46.7±4.5; 61.7±4.9%) as well as AM implants (20.49±5.1; 43.9±9.7%) and AM-PSD implants (19.7±3.5; 48.3±15.6%) showed no statistically significant differences. For SE-PSD and AM-PSD a separate analysis of only the cancellous BIC demonstrated a statistically significant difference after 2 and 8 weeks. Biomechanical findings proved the overall increased stability of the porous implants after 8 weeks. Overall, the great effect of implant macro design on osseointegration was further supported by additional phosphoserine-tethered dendrons for SE and AM implants
    corecore