703 research outputs found

    Thermodynamic Field Theory with the Iso-Entropic Formalism

    Full text link
    A new formulation of the thermodynamic field theory (TFT) is presented. In this new version, one of the basic restriction in the old theory, namely a closed-form solution for the thermodynamic field strength, has been removed. In addition, the general covariance principle is replaced by Prigogine's thermodynamic covariance principle (TCP). The introduction of TCP required the application of an appropriate mathematical formalism, which has been referred to as the iso-entropic formalism. The validity of the Glansdorff-Prigogine Universal Criterion of Evolution, via geometrical arguments, is proven. A new set of thermodynamic field equations, able to determine the nonlinear corrections to the linear ("Onsager") transport coefficients, is also derived. The geometry of the thermodynamic space is non-Riemannian tending to be Riemannian for hight values of the entropy production. In this limit, we obtain again the same thermodynamic field equations found by the old theory. Applications of the theory, such as transport in magnetically confined plasmas, materials submitted to temperature and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein.Comment: 35 page

    Sphingolipids and neuronal degeneration in lysosomal storage disorders

    Get PDF
    Ceramide, sphingomyelin, and glycosphingolipids (both neutral and acidic) are characterized by the presence in the lipid moiety of an aliphatic base known as sphingosine. Altogether, they are called sphingolipids and are particularly abundant in neuronal plasma membranes, where, via interactions with the other membrane lipids and membrane proteins, they play a specific role in modulating the cell signaling processes. The metabolic pathways determining the plasma membrane sphingolipid composition are thus the key point for functional changes of the cell properties. Unnatural changes of the neuronal properties are observed in sphingolipidoses, lysosomal storage diseases occurring when a lysosomal sphingolipid hydrolase is not working, leading to the accumulation of the substrate and to its distribution to all the cell membranes interacting with lysosomes. Moreover, secondary accumulation of sphingolipids is a common trait of other lysosomal storage diseases

    Replay Attacks and Defenses Against Cross-shard Consensus in Sharded Distributed Ledgers

    Get PDF
    We present a family of replay attacks against sharded distributed ledgers targeting cross-shard consensus protocols, such as the recently proposed Chainspace and Omniledger. They allow an attacker, with network access only, to double-spend or lock resources with minimal efforts. The attacker can act independently without colluding with any nodes, and succeed even if all nodes are honest; most of the attacks can also exhibit themselves as faults under periods of asynchrony. These attacks are effective against both shard-led and client-led cross-shard consensus approaches. We present Byzcuit-a new cross-shard consensus protocol that is immune to those attacks. We implement a prototype of Byzcuit and evaluate it on a real cloud-based testbed, showing that our defenses impact performance minimally, and overall performance surpasses previous works

    Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases

    Get PDF
    The central nervous system is characterized by a high content of sphingolipids and by a high diversity in terms of different structures. Stage- and cell-specific sphingolipid metabolism and expression are crucial for brain development and maintenance toward adult age. On the other hand, deep dysregulation of sphingolipid metabolism, leading to altered sphingolipid pattern, is associated with the majority of neurological and neurodegenerative diseases, even those totally lacking a common etiological background. Thus, sphingolipid metabolism has always been regarded as a promising pharmacological target for the treatment of brain disorders. However, any therapeutic hypothesis applied to complex amphipathic sphingolipids, components of cellular membranes, has so far failed probably because of the high regional complexity and specificity of the different biological roles of these structures. Simpler sphingosine-based lipids, including ceramide and sphingosine 1-phosphate, are important regulators of brain homeostasis, and, thanks to the relative simplicity of their metabolic network, they seem a feasible druggable target for the treatment of brain diseases. The enzymes involved in the control of the levels of bioactive sphingoids, as well as the receptors engaged by these molecules, have increasingly allured pharmacologists and clinicians, and eventually fingolimod, a functional antagonist of sphingosine 1-phosphate receptors with immunomodulatory properties, was approved for the therapy of relapsing-remitting multiple sclerosis. Considering the importance of neuroinflammation in many other brain diseases, we would expect an extension of the use of such analogs for the treatment of other ailments in the future. Nevertheless, many aspects other than neuroinflammation are regulated by bioactive sphingoids in healthy brain and dysregulated in brain disease. In this review, we are addressing the multifaceted possibility to address the metabolism and biology of bioactive sphingosine 1-phosphate as novel targets for the development of therapeutic paradigms and the discovery of new drugs

    SoK: Consensus in the Age of Blockchains

    Get PDF
    The core technical component of blockchains is consensus: how to reach agreement among a distributed network of nodes. A plethora of blockchain consensus protocols have been proposed---ranging from new designs, to novel modifications and extensions of consensus protocols from the classical distributed systems literature. The inherent complexity of consensus protocols and their rapid and dramatic evolution makes it hard to contextualize the design landscape. We address this challenge by conducting a systematization of knowledge of blockchain consensus protocols. After first discussing key themes in classical consensus protocols, we describe: (i) protocols based on proof-of-work; (ii) proof-of-X protocols that replace proof-of-work with more energy-efficient alternatives; and (iii) hybrid protocols that are compositions or variations of classical consensus protocols. This survey is guided by a systematization framework we develop, to highlight the various building blocks of blockchain consensus design, along with a discussion on their security and performance properties. We identify research gaps and insights for the community to consider in future research endeavours

    Further studies on the gangliosidic nature of the cholinergic-specific antigen, Chol-1.

    Get PDF
    The antigen designated as Chol-1 beta, detected by an antiserum specific for cholinergic neurons, has been purified to homogeneity from ganglioside mixtures extracted from Torpedo electric organ and pig brain. The final products from the two sources behaved identically in a wide range of tests and gave coincident immunopositive and Ehrlich-positive spots after thin layer chromatography in seven different solvent systems; they were thus considered to be identical and to constitute a single, pure chemical species. Gas-chromatographic analysis revealed the presence of long-chain bases, glucose, galactose, N-acetylgalactosamine, and sialic acid in integral molar ratios of 1:1:2:1:3; the compound's reactivity to cholera toxin after Vibrio cholerae sialidase treatment on thin layer chromatography and the recovery of GM1 as sole product of exhaustive sialidase treatment identified it as a member of the gangliotetrahexosyl series. From the products of partial enzymatic desialylation and treatment with beta-galactosidase and a comparison of the compound's immunoreactivity to anti-Chol-1 antisera with that of other trisialogangliosides of defined molecular structure, we were able to assign a disialosyl residue alpha-Neu5Ac-(2----8)-alpha-Neu5Ac-(2----3)- to the inner galactose, and we suggest GalNAc as a possible site of linkage of the third sialic acid

    GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration

    Get PDF
    Many species of ganglioside GM1, differing for the sialic acid and ceramide content, have been characterized and their physico\u2010chemical properties have been studied in detail since 1963. Scientists were immediately attracted to the GM1 molecule and have carried on an ever\u2010increasing number of studies to understand its binding properties and its neurotrophic and neuroprotective role. GM1 displays a well balanced amphiphilic behavior that allows to establish strong both hydrophobic and hydrophilic interactions. The peculiar structure of GM1 reduces the fluidity of the plasma membrane which implies a retention and enrichment of the ganglioside in specific membrane domains called lipid rafts. The dynamism of the GM1 oligosaccharide head allows it to assume different conformations and, in this way, to interact through hydrogen or ionic bonds with a wide range of membrane receptors as well as with extracellular ligands. After more than 60 years of studies, it is a milestone that GM1 is one of the main actors in determining the neuronal functions that allows humans to have an intellectual life. The progressive reduction of its biosynthesis along the lifespan is being considered as one of the causes underlying neuronal loss in aged people and severe neuronal decline in neurodegenerative diseases. In this review, we report on the main knowledge on ganglioside GM1, with an emphasis on the recent discoveries about its bioactive component

    Characterization of the GM1 oligosaccharide transport across the blood-brain-barrier

    Get PDF
    Ganglioside GM1 has demonstrated to attenuate Parkinson Disease (PD) symptoms in clinical and preclinical trials. Nevertheless, the GM1 efficacy revealed in vitro is critically reduced in vivo, because of the amphiphilic behavior that limits the passage across the blood brain barrier (BBB). In vitro and in vivo experiments showed that GM1 exerts neurotrophic functions by interacting with plasma membrane (PM) proteins throughout its oligosaccharide portion (OligoGM1). Furthermore, OligoGM1 intravenously or subcutaneously injected into mice is absorbed and taken up by different organs and tissues, including brain. In order to take advantage of GM1 oligosaccharide properties and to overcome GM1 pharmacological limitation, this study has been aimed by the investigation of the OligoGM1 transportthrough the BBB, by using a human in vitro model for human brain-like endothelial cells (hBLEC). Ruled out the toxicity of OligoGM1 on hBLEC, the OligoGM1 transport across the hBBB has been analyzed, finding out a 20 fold higher rate than GM1 and a time and concentration dependence. In order to characterize the OligoGM1 passage, a direct evaluation of the OligoGM1 interaction with the ABC-transporters was carried on, leaving out this way for OligoGM1 transport. Moreover, inverse- and 4\ub0C-transport experiments were performed excluding the implication of the active transport for OligoGM1 passage across the hBLEC, leading to consider the passive-paracellular route. Furthermore, after the hBLEC transport, OligoGM1 maintained its stability and capacity to induce neuritogenesis in the mouse neuroblastoma cells line Neuro2a. This preliminary study has improved the knowledge about the GM1 pharmacological potential by proving that OligoGM1 can cross advantageously the BBB, offering a new promising therapeutic strategy
    • …
    corecore