153 research outputs found

    Severe childhood malaria syndromes defined by plasma proteome profiles

    Get PDF
    BACKGROUND Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes. METHODS AND FINDINGS Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children. CONCLUSIONS We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes

    Risks to Birds Traded for African Traditional Medicine: A Quantitative Assessment

    Get PDF
    Few regional or continent-wide assessments of bird use for traditional medicine have been attempted anywhere in the world. Africa has the highest known diversity of bird species used for this purpose. This study assesses the vulnerability of 354 bird species used for traditional medicine in 25 African countries, from 205 genera, 70 families, and 25 orders. The orders most represented were Passeriformes (107 species), Falconiformes (45 species), and Coraciiformes (24 species), and the families Accipitridae (37 species), Ardeidae (15 species), and Bucerotidae (12 species). The Barn owl (Tyto alba) was the most widely sold species (seven countries). The similarity of avifaunal orders traded is high (analogous to ‘‘morphospecies’’, and using Sørensen’s index), which suggests opportunities for a common understanding of cultural factors driving demand. The highest similarity was between bird orders sold in markets of Benin vs. Burkina Faso (90%), but even bird orders sold in two geographically separated countries (Benin vs. South Africa and Nigeria vs. South Africa) were 87% and 81% similar, respectively. Rabinowitz’s ‘‘7 forms of rarity’’ model, used to group species according to commonness or rarity, indicated that 24% of traded bird species are very common, locally abundant in several habitats, and occur over a large geographical area, but 10% are rare, occur in low numbers in specific habitats, and over a small geographical area. The order with the highest proportion of rare species was the Musophagiformes. An analysis of species mass (as a proxy for size) indicated that large and/or conspicuous species tend to be targeted by harvesters for the traditional medicine trade. Furthermore, based on cluster analyses for species groups of similar risk, vultures, hornbills, and other large avifauna, such as bustards, are most threatened by selective harvesting and should be prioritised for conservation action.University of the Witwatersrand SPARC Prestigious and URC Postdoctoral Fellowships; National Research Foundatio

    Data-driven malaria prevalence prediction in large densely populated urban holoendemic sub-Saharan West Africa

    Get PDF
    Over 200 million malaria cases globally lead to half-million deaths annually. The development of malaria prevalence prediction systems to support malaria care pathways has been hindered by lack of data, a tendency towards universal "monolithic" models (one-size-fits-all-regions) and a focus on long lead time predictions. Current systems do not provide short-term local predictions at an accuracy suitable for deployment in clinical practice. Here we show a data-driven approach that reliably produces one-month-ahead prevalence prediction within a densely populated all-year-round malaria metropolis of over 3.5 million inhabitants situated in Nigeria which has one of the largest global burdens of P. falciparum malaria. We estimate one-month-ahead prevalence in a unique 22-years prospective regional dataset of > 9 × 10^{4} participants attending our healthcare services. Our system agrees with both magnitude and direction of the prediction on validation data achieving MAE ≤ 6 × 10^{-2}, MSE ≤ 7 × 10^{-3}, PCC (median 0.63, IQR 0.3) and with more than 80% of estimates within a (+ 0.1 to - 0.05) error-tolerance range which is clinically relevant for decision-support in our holoendemic setting. Our data-driven approach could facilitate healthcare systems to harness their own data to support local malaria care pathways

    Defective Innate Cell Response and Lymph Node Infiltration Specify Yersinia pestis Infection

    Get PDF
    Since its recent emergence from the enteropathogen Yersinia pseudotuberculosis, Y. pestis, the plague agent, has acquired an intradermal (id) route of entry and an extreme virulence. To identify pathophysiological events associated with the Y. pestis high degree of pathogenicity, we compared disease progression and evolution in mice after id inoculation of the two Yersinia species. Mortality studies showed that the id portal was not in itself sufficient to provide Y. pseudotuberculosis with the high virulence power of its descendant. Surprisingly, Y. pseudotuberculosis multiplied even more efficiently than Y. pestis in the dermis, and generated comparable histological lesions. Likewise, Y. pseudotuberculosis translocated to the draining lymph node (DLN) and similar numbers of the two bacterial species were found at 24 h post infection (pi) in this organ. However, on day 2 pi, bacterial loads were higher in Y. pestis-infected than in Y. pseudotuberculosis-infected DLNs. Clustering and multiple correspondence analyses showed that the DLN pathologies induced by the two species were statistically significantly different and identified the most discriminating elementary lesions. Y. pseudotuberculosis infection was accompanied by abscess-type polymorphonuclear cell infiltrates containing the infection, while Y. pestis-infected DLNs exhibited an altered tissue density and a vascular congestion, and were typified by an invasion of the tissue by free floating bacteria. Therefore, Y. pestis exceptional virulence is not due to its recently acquired portal of entry into the host, but is associated with a distinct ability to massively infiltrate the DLN, without inducing in this organ an organized polymorphonuclear cell reaction. These results shed light on pathophysiological processes that draw the line between a virulent and a hypervirulent pathogen

    From Eshu to Obatala: animals used in sacrificial rituals at Candomblé "terreiros" in Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The practice of sacrifice has occurred in several cultures and religions throughout history and still exists today. Candomblé, a syncretical Afro-Brazilian religion, practices the sacrificial ritual called "<it>Orô</it>" by its adherents. The present work aims to document the use of animal species in these sacrificial practices in the cities of Caruaru (PE) and Campina Grande (PB) in Norteastern Brazil, and to further understand the symbolism of these rituals.</p> <p>Methods</p> <p>Semi-structured and unstructured interviews and informal discussions were held with 11 Candomblé priests and priestesses between the months of August 2007 and June 2008. We attended rituals performed at "terreiros" where animals were sacrificed, in order to obtain photographic material and observe the procedures and techniques adopted.</p> <p>Results</p> <p>A total of 29 animal species were used during sacrificial rituals according to the priests and priestesses. These species were classified in 5 taxanomic groups: Molluscs (n = 1), Amphibians (n = 2), Reptiles (n = 2), Birds (n = 10) and Mammals (n = 14). According to Candomblé beliefs, animals are sacrificed and offered to their deities, known as orishas, for the prosperity of all life. There is a relationship between the colour, sex and behaviour of the animal to be sacrificed, and the orisha to whom the animal is going to be offered. The many myths that form the cosmogony of Candomblé can often explain the symbolism of the rituals observed and the animal species sacrificed. These myths are conveyed to adherants by the priests and priestesses during the ceremonies, and are essential to the continuation of this religion.</p> <p>Conclusion</p> <p>Candomblé is a sacrificial religion that uses animals for its liturgical purposes. The principal reason for sacrifice is to please supernatural deities known as orishas in order to keep life in harmony. This is accomplished through feeding them in a spiritual sense through sacrifice, maintaining a perfect link between men and the gods, and a connection between the material world (called <it>Aiyê</it>) and the supernatural world (called <it>Orun</it>).</p

    Plasminogen Alleles Influence Susceptibility to Invasive Aspergillosis

    Get PDF
    Invasive aspergillosis (IA) is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855) correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser) where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn) was also identified in the human homolog (PLG; Gene ID 5340). An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT) recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection

    Identification of Chromosomal Genes in Yersinia pestis that Influence Type III Secretion and Delivery of Yops into Target Cells

    Get PDF
    Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague

    Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence

    Get PDF
    Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/ usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Deltafim Escherichia coli strain AAEC185 to test the assembled Y. pestis surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection. However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 degrees C rather than 37 degrees C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such as cell adhesion and biofilm formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91950/1/2011 Microbiology - Contributions of chaperone usher systems to cell binding biofilm formation and Yersinia pestis virulence.pd

    A Yersinia Effector with Enhanced Inhibitory Activity on the NF-κB Pathway Activates the NLRP3/ASC/Caspase-1 Inflammasome in Macrophages

    Get PDF
    A type III secretion system (T3SS) in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJKIM) has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJKIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJKIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJKIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJCO92, YopJKIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJKIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJCO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro-inflammatory form of apoptosis may represent an early innate immune response to highly virulent pathogens such as Y. pestis KIM that have evolved an enhanced ability to inhibit host signaling pathways

    The NlpD Lipoprotein Is a Novel Yersinia pestis Virulence Factor Essential for the Development of Plague

    Get PDF
    Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD50 of at least 107 cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague
    corecore