11 research outputs found

    Solenosmilia variabilis-bearing cold-water coral mounds off Brazil

    Get PDF
    Cold-water corals (CWC), dominantly Desmophyllum pertusum (previously Lophelia pertusa), and their mounds have been in the focus of marine research during the last two decades; however, little is known about the mound-forming capacity of other CWC species. Here, we present new 230Th/U age constraints of the relatively rarely studied framework-building CWC Solenosmilia variabilis from a mound structure off the Brazilian margin combined with computed tomography (CT) acquisition. Our results show that S. variabilis can also contribute to mound formation, but reveal coral-free intervals of hemipelagic sediment deposits, which is in contrast to most of the previously studied CWC mound structures. We demonstrate that S. variabilis only occurs in short episodes of < 4 kyr characterized by a coral content of up to 31 vol%. In particular, it is possible to identify distinct clusters of enhanced aggradation rates (AR) between 54 and 80 cm ka−1. The determined AR are close to the maximal growth rates of individual S. variabilis specimens, but are still up to one order of magnitude smaller than the AR of D. pertusum mounds. Periods of enhanced S. variabilis AR predominantly fall into glacial periods and glacial terminations that were characterized by a 60–90 m lower sea level. The formation of nearby D. pertusum mounds is also associated with the last glacial termination. We suggest that the short-term periods of coral growth and mound formation benefited from enhanced organic matter supply, either from the adjacent exposed shelf and coast and/or from enhanced sea-surface productivity. This organic matter became concentrated on a deeper water-mass boundary between South Atlantic Central Water and the Antarctic Intermediate Water and may have been distributed by a stronger hydrodynamic regime. Finally, periods of enhanced coral mound formation can also be linked to advection of nutrient-rich intermediate water masses that in turn might have (directly or indirectly) further facilitated coral growth and mound formation

    Quantitative and qualitative assessment of plasma cell dyscrasias in dual-layer spectral CT

    No full text
    Objectives!#!Virtual non-calcium (VNCa) images could improve assessment of plasma cell dyscrasias by enhancing visibility of bone marrow. Thus, VNCa images from dual-layer spectral CT (DLCT) were evaluated at different calcium suppression (CaSupp) indices, correlating results with apparent diffusion coefficient (ADC) values from MRI.!##!Methods!#!Thirty-two patients with initial clinical diagnosis of a plasma cell dyscrasia before any chemotherapeutic treatment, who had undergone whole-body low-dose DLCT and MRI within 2 months, were retrospectively enrolled. VNCa images with CaSupp indices ranging from 25 to 95 in steps of 10, conventional CT images, and ADC maps were quantitatively analyzed using region-of-interests in the vertebral bodies C7, T12, L1-L5, and the iliac bone. Independent two-sample t-test, Wilcoxon-signed-rank test, Pearson's correlation, and ROC analysis were performed.!##!Results!#!Eighteen patients had a non-diffuse, 14 a diffuse infiltration in conventional MRI. A significant difference between diffuse and non-diffuse infiltration was shown for VNCa-CT with CaSupp indices from 55 to 95, for conventional CT, and for ADC (each p &amp;lt; 0.0001). Significant quantitative correlation between VNCa-CT and MRI could be found with strongest correlation at CaSupp index 65 for L3 (r = 0.68, p &amp;lt; 0.0001) and averaged L1-L5 (r = 0.66, p &amp;lt; 0.0001). The optimum CT number cut-off point for differentiation between diffuse and non-diffuse infiltration at CaSupp index 65 for averaged L1-L5 was -1.6 HU (sensitivity 78.6%, specificity 75.0%).!##!Conclusion!#!Measurements in VNCa-CT showed the highest correlation with ADC at CaSupp index 65. VNCa technique may prove useful for evaluation of bone marrow infiltration if MRI is not feasible.!##!Key points!#!• VNCa-CT images can support the evaluation of bone marrow infiltration in plasma cell dyscrasias. • VNCa measurements of vertebral bodies show significant correlation with ADC in MRI. • Averaging L1-L5 at CaSupp index 65 allowed quantitative detection of infiltration comparable to MRI ADC

    Virtual monochromatic spectral imaging versus linearly blended dual-energy and single-energy imaging during CT-guided biopsy needle positioning: Optimization of keV settings and impact on image quality.

    No full text
    OBJECTIVES:To compare image quality and metal artifact reduction between virtual monochromatic spectral imaging (VMSI), linearly blended dual-energy (DE) and single-energy (SE) images, each with and without dedicated iterative metal artifact reduction (iMAR) for CT-guided biopsy. MATERIALS AND METHODS:A biopsy trocar was positioned in the liver of six pigs. DE (Sn140/100kVp) and SE (120kVp/200mAs) acquisitions were performed with equivalent dose. From dual-energy datasets DE Q30-3 images and VMSI between 40-180 keV in steps of 20 keV were generated. From SE datasets I30-3 images were reconstructed. All images were reconstructed with and without iMAR. Objective image quality was analyzed applying density measurements at standardized positions (e.g. trocar tip and liver parenchyma adjacent to the trocar tip) and semi-automated threshold based segmentation. Subjective image quality was performed using semi-quantitative scores. Analyses were performed by two observers. RESULTS:At the trocar tip quantitative image analysis revealed significant difference in CT numbers between reconstructions with iMAR compared to reconstructions without iMAR for VMSI at lower keV levels (80 and 100 keV; p = 0.03) and DE (p = 0.03). For liver parenchyma CT numbers were significantly higher in VMSI at high keV compared to low keV (p≤0.01). VMSI at high keV also showed higher CT numbers compared to DE and SE images, though not the level of statistical significance. The best signal-to-noise ratio for VMSI was at 80 keV and comparable to DE and SE. Noise was lowest at 80 keV and lower than in DE and SE. Subjective image quality was best with VMSI at 80 keV regardless of the application of iMAR. iMAR significantly improved image quality at levels of 140 keV and 160 keV. Interreader-agreement was good for quantitative and qualitative analysis. CONCLUSION:iMAR improved image quality in all settings. VMSI with iMAR provided metal artifact reduction and better image quality at 80 keV and thus could improve the accurate positioning in CT-guided needle biopsy. In comparison, DE imaging did not improve image quality compared to SE

    Semi-automatic artifact quantification in thermal ablation probe and algorithms for the evaluation of metal artifact reduction

    No full text
    AbstractObjectives To compare metal artifacts and evaluation of metal artifact reduction algorithms during probe positioning in computed tomography (CT)-guided microwave ablation (MWA), cryoablation (CRYO), and radiofrequency ablation (RFA).Materials and methods Using CT guidance, individual MWA, CRYO, and RFA ablation probes were placed into the livers of 15 pigs. CT imaging was then performed to determine the probe’s position within the test subject’s liver. Filtered back projection (B30f) and iterative reconstructions (I30-1) were both used with and without dedicated iterative metal artifact reduction (iMAR) to generate images from the initial data sets. Semi-automatic segmentation-based quantitative evaluation was conducted to estimate artifact percentage within the liver, while qualitative evaluation of metal artifact extent and overall image quality was performed by two observers using a 5-point Likert scale: 1-none, 2-mild, 3-moderate, 4-severe, 5-non-diagnostic.Results Among MWA, RFA, and CRYO, compared with non-iMAR in B30f reconstruction, the largest extent of artifact volume percentages were observed for CRYO (11.5–17.9%), followed by MWA (4.7–6.6%) and lastly in RFA (5.5–6.2%). iMAR significantly reduces metal artifacts for CRYO and MWA quantitatively (p = 0.0020; p = 0.0036, respectively) and qualitatively (p = 0.0001, p = 0.0005), but not for RFA. No significant reduction in metal artifact percentage was seen after applying iterative reconstructions (p > 0.05). Noise, contrast-to-noise-ratio, or overall image quality did not differ between probe types, irrespective of the application of iterative reconstruction and iMAR.Conclusion A dedicated metal artifact algorithm may decrease metal artifacts and improves image quality significantly for MWA and CRYO probes. Their application alongside with dedicated metal artifact algorithm should be considered during CT-guided positioning

    Solenosmilia variabilis-bearing cold-water coral mounds off Brazil

    No full text
    Cold-water corals (CWC), dominantly Desmophyllum pertusum (previously Lophelia pertusa), and their mounds have been in the focus of marine research during the last two decades; however, little is known about the mound-forming capacity of other CWC species. Here, we present new 230Th/U age constraints of the relatively rarely studied framework-building CWC Solenosmilia variabilis from a mound structure off the Brazilian margin combined with computed tomography (CT) acquisition. Our results show that S. variabilis can also contribute to mound formation, but reveal coral-free intervals of hemipelagic sediment deposits, which is in contrast to most of the previously studied CWC mound structures. We demonstrate that S. variabilis only occurs in short episodes of < 4 kyr characterized by a coral content of up to 31 vol%. In particular, it is possible to identify distinct clusters of enhanced aggradation rates (AR) between 54 and 80 cm ka−1. The determined AR are close to the maximal growth rates of individual S. variabilis specimens, but are still up to one order of magnitude smaller than the AR of D. pertusum mounds. Periods of enhanced S. variabilis AR predominantly fall into glacial periods and glacial terminations that were characterized by a 60–90 m lower sea level. The formation of nearby D. pertusum mounds is also associated with the last glacial termination. We suggest that the short- term periods of coral growth and mound formation benefited from enhanced organic matter supply, either from the adjacent exposed shelf and coast and/or from enhanced sea-surface productivity. This organic matter became concentrated on a deeper water- mass boundary between South Atlantic Central Water and the Antarctic Intermediate Water and may have been distributed by a stronger hydrodynamic regime. Finally, periods of enhanced coral mound formation can also be linked to advection of nutrient-rich intermediate water masses that in turn might have (directly or indirectly) further facilitated coral growth and mound formation
    corecore