188 research outputs found
Information-theoretic analysis of coating PUFs
Physical Uncloneable Functions (PUFs) can be used as a cost-effective means to store cryptographic key material in an uncloneable way. In coating PUFs, keys are generated from capacitance measurements of a coating containing many randomly distributed particles with different dielectric constants.
We introduce a physical model of coating PUFs by simplifying the capacitance sensors to a parallel plate geometry. We estimate the amount of information that can be extracted from the coating. We show that the inherent entropy is proportional to , where n is the number of particles that fit between the capacitor plates in a straight line. However, measurement noise may severely reduce the amount of information that can actually be extracted in practice. In the noisy regime the number of extractable bits is in fact a decreasing function of n. We derive an optimal value for n as a function of the noise amplitude, the PUF geometry and the dielectric constants
ALGSICS - Combining physics and cryptography to enhance security and privacy in RFID systems
In this paper, we introduce several new mechanisms that are cheap to implement or integrate into RFID tags and that at the same time enhance their security and privacy properties. Our aim is to provide solutions that make use of existing (or expected) functionality on the tag or that are inherently cheap and thus, enhance the privacy friendliness of the technology "almost" for free. Our proposals, for example, make use of environmental information (presence of light temperature, humidity, etc.) to disable or enable the RFID tag. A second possibility that we explore is the use of delays in revealing a secret key used to later establish a secure communication channel. We also introduce the idea of a "sticky tag," which can be used to re-enable a disabled (or killed) tag whenever the user considers it to be safe. We discuss the security and describe usage scenarios for all solutions. Finally, we review previous works that use physical principles to provide security and privacy in RFID systems
The clinical utility of lung clearance index in early cystic fibrosis lung disease is not impacted by the number of multiple-breath washout trials
© ERS 2018. The lung clearance index (LCI) from the multiple-breath washout (MBW) test is a promising surveillance tool for pre-school children with cystic fibrosis (CF). Current guidelines for MBW testing recommend that three acceptable trials are required. However, success rates to achieve these criteria are low in children aged < 7 years and feasibility may improve with modified pre-school criteria that accepts tests with two acceptable trials. This study aimed to determine if relationships between LCI and clinical outcomes of CF lung disease differ when only two acceptable MBW trials are assessed. Healthy children and children with CF aged 3–6 years were recruited for MBW testing. Children with CF also underwent bronchoalveolar lavage fluid collection and a chest computed tomography scan. MBW feasibility increased from 46% to 75% when tests with two trials were deemed acceptable compared with tests where three acceptable trials were required. Relationships between MBW outcomes and markers of pulmonary inflammation, infection and structural lung disease were not different between tests with three acceptable trials compared with tests with two acceptable trials. This study indicates that pre-school MBW data from two acceptable trials may provide sufficient information on ventilation distribution if three acceptable trials are not possible
A meta-analysis of state-of-the-art electoral prediction from Twitter data
Electoral prediction from Twitter data is an appealing research topic. It
seems relatively straightforward and the prevailing view is overly optimistic.
This is problematic because while simple approaches are assumed to be good
enough, core problems are not addressed. Thus, this paper aims to (1) provide a
balanced and critical review of the state of the art; (2) cast light on the
presume predictive power of Twitter data; and (3) depict a roadmap to push
forward the field. Hence, a scheme to characterize Twitter prediction methods
is proposed. It covers every aspect from data collection to performance
evaluation, through data processing and vote inference. Using that scheme,
prior research is analyzed and organized to explain the main approaches taken
up to date but also their weaknesses. This is the first meta-analysis of the
whole body of research regarding electoral prediction from Twitter data. It
reveals that its presumed predictive power regarding electoral prediction has
been rather exaggerated: although social media may provide a glimpse on
electoral outcomes current research does not provide strong evidence to support
it can replace traditional polls. Finally, future lines of research along with
a set of requirements they must fulfill are provided.Comment: 19 pages, 3 table
Management approaches and aquaculture of sturgeons in the Lower Danube region countries
Summary This paper presents the status and trends in management of sturgeon species and the development of sturgeon aquaculture in the Lower Danube countries: Romania, Bulgaria, Serbia, Ukraine and Moldova. Sturgeon fishery moratoria and aquaculture development represent first steps in the Lower Danube countries to combat extirpation. Supportive stocking was used as a compensation for the impact of sturgeon fishery and dam construction, but these efforts unfortunately lacked adequate cooperation and coordination between and among region countries. Unsolved problems remain, such as the presence of illegal sturgeon fishery, water pollution, habitat destruction and fragmentation. Construction of fish passes and habitat restoration project developments are two key issues that have yet to be tackled in the Lower Danube region
Observation and formation mechanism of 360° domain wall rings in synthetic anti-ferromagnets with interlayer chiral interactions
The interlayer Dzyaloshinskii–Moriya interaction (IL-DMI) chirally couples spins in different ferromagnetic layers of multilayer heterostructures. So far, samples with IL-DMI have been investigated utilizing magnetometry and magnetotransport techniques, where the interaction manifests as a tunable chiral exchange bias field. Here, we investigate the nanoscale configuration of the magnetization vector in a synthetic anti-ferromagnet (SAF) with IL-DMI, after applying demagnetizing field sequences. We add different global magnetic field offsets to the demagnetizing sequence in order to investigate the states that form when the IL-DMI exchange bias field is fully or partially compensated. For magnetic imaging and vector reconstruction of the remanent magnetic states, we utilize x-ray magnetic circular dichroism photoemission electron microscopy, evidencing the formation of 360° domain wall rings of typically 0.5–3.0 μm in diameter. These spin textures are only observed when the exchange bias field due to the IL-DMI is not perfectly compensated by the magnetic field offset. From a combination of micromagnetic simulations, magnetic charge distribution, and topology arguments, we conclude that a non-zero remanent effective field with components both parallel and perpendicular to the anisotropy axis of the SAF is necessary to observe the rings. This work shows how the exchange bias field due to IL-DMI can lead to complex metastable spin states during reversal, important for the development of future spintronic devices
Genetic Burden of TNNI3K in Diagnostic Testing of Patients With Dilated Cardiomyopathy and Supraventricular Arrhythmias
BACKGROUND: Genetic variants in TNNI3K (troponin-I interacting kinase) have previously been associated with dilated cardiomyopathy (DCM), cardiac conduction disease, and supraventricular tachycardias. However, the link between TNNI3K variants and these cardiac phenotypes shows a lack of consensus concerning phenotype and protein function. METHODS: We describe a systematic retrospective study of a cohort of patients undergoing genetic testing for cardiac arrhythmias and cardiomyopathy including TNNI3K. We further performed burden testing of TNNI3K in the UK Biobank. For 2 novel TNNI3K variants, we tested cosegregation. TNNI3K kinase function was estimated by TNNI3K autophosphorylation assays.RESULTS: We demonstrate enrichment of rare coding TNNI3K variants in DCM patients in the Amsterdam cohort. In the UK Biobank, we observed an association between TNNI3K missense (but not loss-of-function) variants and DCM and atrial fibrillation. Furthermore, we demonstrate genetic segregation for 2 rare variants, TNNI3K-p.Ile512Thr and TNNI3K-p.His592Tyr, with phenotypes consisting of DCM, cardiac conduction disease, and supraventricular tachycardia, together with increased autophosphorylation. In contrast, TNNI3K-p.Arg556_Asn590del, a likely benign variant, demonstrated depleted autophosphorylation. CONCLUSIONS: Our findings demonstrate an increased burden of rare coding TNNI3K variants in cardiac patients with DCM. Furthermore, we present 2 novel likely pathogenic TNNI3K variants with increased autophosphorylation, suggesting that enhanced autophosphorylation is likely to drive pathogenicity.</p
- …