34 research outputs found

    Interactive effects of ocean acidification and warming on sediment-dwelling marine calcifiers

    Full text link
    University of Technology, Sydney. Faculty of Science.The increase in human activities, such as the burning of fossil fuels, has elevated the concentration of atmospheric carbon dioxide and warmed the planet through the greenhouse effect. In addition, approximately 30% of the CO2 produced by human activities has dissolved into the oceans, lowering pH and reducing the abundance, and hence the availability, of carbonate ions (CO3 2-), which are essential for calcium carbonate deposition. Of great concern is the impact to photosynthetic marine calcifiers, elevated CO2 and temperature is expected to have a negative impact on the health and survivorship of calcifying marine organisms. This thesis explores the effects of elevated CO2 and temperature on the microenvironment, photosynthetic efficiency, calcification and biomechanical properties in important sediment producers on coral reefs. The reef-building and sedimentdwelling organisms, Halimeda and symbiont-bearing foraminifera are prominent, coexisting taxa in shallow coral reefs and play a vital role in tropical and subtropical ecosystems as producers of sediment and habitats and food sources for other marine organisms. However, there is limited evidence of the effects of ocean warming and acidification in these two keystone species. Irradiance alone was not found to influence photosynthetic efficiency, photoprotective mechanisms and calcification in Halimeda macroloba, Halimeda cylindracea and Halimeda opuntia (Chapter 2). There is also limited knowledge of foraminiferal biology on coral reefs, especially the symbiotic relationship between the protest host and algal symbionts. Marginopora vertebralis, the dominant tropical foraminifera, shows phototactic behavior, which is a unique mechanism for ensuring symbionts experience an ideal light environment. The diurnal photosynthetic responses of in hospite symbiont photosynthesis was linked to host movement and aided in preventing photoinhibition and bleaching by moving away from over-saturating irradiance, to more optimal light fields (Chapter 3). With this greater understanding of Halimeda and foraminiferan biology and photosynthesis, the impacts of ocean warming and acidification on photosynthesis and calcification were then tested (Chapter 4, 5 and 6). Impacts of ocean acidification and warming were investigated through exposure to a combination of four temperature (28, 30, 32, 34°C) and four pCO2 levels (380, 600, 1000, 2000 µatm; equivalent to future climate change scenarios for the current and the years 2065, 2100 and 2200 and simulating the IPCC A1F1 predictions) (Chapter 4). Elevated CO2 and temperature caused a decline in photosynthetic efficiency (FV/FM), calcification and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. The elevated CO2 and temperature greatly affect the CaCO3 crystal formation with reductions in density and width. M. vertebralis experienced the greatest inhibition to crystal formation, suggesting that this high Mg-calcite depositing species is more sensitive to lower pH and higher temperature than aragonite-forming Halimeda species. Exposure to elevated temperature alone or reduced pH alone decreased photosynthesis and calcification in these species. However, there was a strong synergistic effect of elevated temperature and reduced pH, with dramatic reductions in photosynthesis and calcification in all three species. This study suggested that the elevated temperature of 32°C and the pCO2 concentration of 1000 µatm are the upper limit for survival of these species art our site of collection (Heron Island on the Great Barrier Reef, Australia). Microsensors enabled the detection of O2 surrounding specimens at high spatial and temporal resolutions and revealed a 70-80% in decrease in O2 production under elevated CO2 and temperature (1200 µatm 32°C) in Halimeda (Chapter 5) and foraminifera (Chapter 6). The results from O2 microprofiles support the photosynthetic pigment and chlorophyll fluorescence data, showing decreasing O2 production with declining chlorophyll a and b concentrations and a decrease in photosynthetic efficiency under ocean acidification and/or temperature stress. This revealed that photosynthesis and calcification are closely coupled with reductions in photosynthetic efficiency leading to reductions in calcification. Reductions in carbonate availability reduced calcification and that can lead to weakened calcified structures. Elevations in water temperature is expected to augment this weakening, resulting in decreased mechanical integrity and increased susceptibility to storm- and herbivory-induced mortality in Halimeda sp. The morphological and biomechanical properties in H. macroloba and H. cylindracea at different wave exposures were then investigated in their natural reef habitats (Chapter 7). The results showed that both species have morphological (e.g. blade surface area, holdfast volume) and biomechanical (e.g. force required to uproot, force required to break thalli) adaptations to different levels of hydrodynamic exposure. The mechanical integrity and skeletal mineralogy of Halimeda was then investigated in response to future climate change scenarios (Chapter 7). The biomechanical properties (shear strength and punch strength) significantly declined in the more heavily calcified H. cylindracea at 32ºC and 1000 µatm, whereas were variable in less heavily calcified H. macroloba, indicating different responses between Halimeda species. An increase in less-soluble low Mgcalcite was observed under elevated CO2 conditions. Significant changes in Mg:Ca and Sr:Ca ratios under elevated CO2 and temperature conditions suggested that calcification was affected at the ionic level. It is concluded that Halimeda is biomechanically sensitive to elevated temperature and more acidic oceans and may lead to increasing susceptibility to herbivory and higher risk of thallus breakage or removal from the substrate. Experimental results throughout the thesis revealed that ocean acidification and warming have negative impacts on photosynthetic efficiency, productivity, calcification and mechanical integrity, which is likely to lead to increased mortality in these species under a changing climate. A loss of these calcifying keystone species will have a dramatic impact on carbonate accumulation, sediment turnover, and coral reef community and habitat structure

    Evaluation of reference genes for RT-qPCR studies in the seagrass zostera muelleri exposed to light limitation

    Get PDF
    Seagrass meadows are threatened by coastal development and global change. In the face of these pressures, molecular techniques such as reverse transcription quantitative real-time PCR (RT-qPCR) have great potential to improve management of these ecosystems by allowing early detection of chronic stress. In RT-qPCR, the expression levels of target genes are estimated on the basis of reference genes, in order to control for RNA variations. Although determination of suitable reference genes is critical for RT-qPCR studies, reports on the evaluation of reference genes are still absent for the major Australian species Zostera muelleri subsp. capricorni (Z. muelleri). Here, we used three different software (geNorm, NormFinder and Bestkeeper) to evaluate ten widely used reference genes according to their expression stability in Z. muelleri exposed to light limitation. We then combined results from different software and used a consensus rank of four best reference genes to validate regulation in Photosystem I reaction center subunit IV B and Heat Stress Transcription factor A- gene expression in Z. muelleri under light limitation. This study provides the first comprehensive list of reference genes in Z. muelleri and demonstrates RT-qPCR as an effective tool to identify early responses to light limitation in seagrass

    Physiological Responses of Pocillopora acuta and Porites lutea Under Plastic and Fishing Net Stress

    Full text link
    Marine debris has become a global problem affecting coral health around the globe. However, the photophysiological responses of corals to marine debris stress remain unclear. Therefore, this study firstly investigated transparent and opaque plastic bag shading and fishing nets directly contacting the coral. Photosynthetic performance, pigment content, symbiont density, and calcification rate of a branching coral Pocillopora acuta and a massive coral Porites lutea were investigated after 4 weeks of exposure to marine debris. The results show that the maximum quantum yield of PSII significantly decreased in P. lutea with all treatments, while P. acuta showed no effect on the maximum quantum yield of PSII from any treatments. Transparent plastic bag shading does not affect P. acuta, but significantly affected the maximum photochemical efficiency of P. lutea. Photoacclimation of cellular pigment content was also observed under opaque plastic bag shading for both species at week 2. Fishing nets had the strongest effect and resulted in P. acuta bleaching and P. lutea partial mortality as well as a decline in zooxanthellae density. Calcification rate of P. acuta significantly decreased with treatments using opaque plastic bag and fishing net, but for P. lutea only the treatment with fishing net gave any observable effects. This study suggests that the sensitivities of corals to marine debris differ strongly by species and morphology of the coral

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    Molecular physiology reveals ammonium uptake and related gene expression in the seagrass Zostera muelleri

    Full text link
    © 2016 Elsevier Ltd Seagrasses are important marine foundation species, which are presently threatened by coastal development and global change worldwide. The molecular mechanisms that drive seagrass responses to anthropogenic stresses, including elevated levels of nutrients such as ammonium, remains poorly understood. Despite the evidence that seagrasses can assimilate ammonium by using glutamine synthetase (GS)/glutamate synthase (glutamine-oxoglutarate amidotransferase or GOGAT) cycle, the regulation of this fundamental metabolic pathway has never been studied at the gene expression level in seagrasses so far. Here, we combine (i) reverse transcription quantitative real-time PCR (RT-qPCR) to measure expression of key genes involved in the GS/GOGAT cycle, and (ii) stable isotope labelling and mass spectrometry to investigate 15N-ammonium assimilation in the widespread Australian species Zostera muelleri subsp. capricorni (Z. muelleri). We demonstrate that exposure to a pulse of ammonium in seawater can induce changes in GS gene expression of Z. muelleri, and further correlate these changes in gene expression with 15N-ammonium uptake rate in above- and below-ground tissue

    Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass <i>Zostera muelleri</i>

    Get PDF
    © 2017, Springer Science+Business Media B.V. Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production

    Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon

    Get PDF
    Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 ?atm) and DOC (added as 833 ?mol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future OA scenarios, with important consequences for beach erosion and coastal sediment dynamics

    Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers

    Full text link
    The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV: FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. Chlorophyll (Chl) a and b concentration in Halimeda spp. Significantly decreased in 203 Pa, 32°C and 34°C treatments, but Chl a and Chl c2 concentration in M. vertebralis was not affected by temperature alone, with significant declines in the 61, 101, and 203 Pa treatments at 28°C. Significant decreases in FV: FM in all species were found after 5 weeks of exposure to elevated CO2 (203 Pa in all temperature treatments) and temperature (32°C and 34°C in all pH treatments). The rate of oxygen prod°Ction declined at 61, 101, and 203 Pa in all temperature treatments for all species. The elevated CO2 and temperature treatments greatly reduced calcification (growth and crystal size) in M. vertebralis and, to a lesser extent, in Halimeda spp. These findings indicate that 32°C and 101 Pa CO2, are the upper limits for survival of these species on Heron Island reef, and we conclude that these species will be highly vulnerable to the predicted future climate change scenarios of elevated temperature and ocean acidification. © 2011, by the American Society of Limnology and Oceanography, Inc
    corecore