66 research outputs found

    Temperature dependence of a vortex in a superfluid Fermi gas

    Full text link
    The temperature dependence of an isolated quantum vortex, embedded in an otherwise homogeneous fermionic superfluid of infinite extent, is determined via the Bogoliubov-de Gennes (BdG) equations across the BCS-BEC crossover. Emphasis is given to the BCS side of this crossover, where it is physically relevant to extend this study up to the critical temperature for the loss of the superfluid phase, such that the size of the vortex increases without bound. To this end, two novel techniques are introduced. The first one solves the BdG equations with "free boundary conditions", which allows one to determine with high accuracy how the vortex profile matches its asymptotic value at a large distance from the center, thus avoiding a common practice of constraining the vortex in a cylinder with infinite walls. The second one improves on the regularization procedure of the self-consistent gap equation when the inter-particle interaction is of the contact type, and permits to considerably reduce the time needed for its numerical integration, by drawing elements from the derivation of the Gross-Pitaevskii equation for composite bosons starting from the BdG equations.Comment: 18 pgaes, 16 figure

    The effects of a revised 7^7Be e−^--capture rate on solar neutrino fluxes

    Get PDF
    The electron-capture rate on 7^7Be is the main production channel for 7^7Li in several astrophysical environments. Theoretical evaluations have to account for not only the nuclear interaction, but also the processes in the plasma where 7^7Be ions and electrons interact. In the past decades several estimates were presented, pointing out that the theoretical uncertainty in the rate is in general of few percents. In the framework of fundamental solar physics, we consider here a recent evaluation for the 7^7Be+e−^- rate, not used up to now in the estimate of neutrino fluxes. We analysed the effects of the new assumptions on Standard Solar Models (SSMs) and compared the results obtained by adopting the revised 7^7Be+e−^- rate to those obtained by the one reported in a widely used compilation of reaction rates (ADE11). We found that new SSMs yield a maximum difference in the efficiency of the 7^7Be channel of about -4\% with respect to what is obtained with the previously adopted rate. This fact affects the production of neutrinos from 8^8B, increasing the relative flux up to a maximum of 2.7\%. Negligible variations are found for the physical and chemical properties of the computed solar models. The agreement with the SNO measurements of the neutral current component of the 8^8B neutrino flux is improved.Comment: 7 pages, 3 figures, 4 tables. Accepted for the publication on A&

    Theoretical estimate of the half-life for the radioactive 134^{134}Cs and 135^{135}Cs in astrophysical scenarios

    Get PDF
    We analyze the 55134^{134}_{55}Cs→56134\rightarrow^{134}_{56}Ba and 55135^{135}_{55}Cs→56135\rightarrow^{135}_{56}Ba ÎČ−\beta^- decays, which are crucial production channels for Ba isotopes in Asymptotic Giant Branch (AGB) stars. We reckon, from relativistic quantum mechanis, the effects of multichannel scattering onto weak decays, including nuclear and electronic excited states (ES) populated above ≃\simeq 10 keV, for both parent and daughter nuclei. We find increases in the half-lives for T>108T>10^8 K (by more than a factor 3 for 134^{134}Cs) as compared to previous works based on systematics. We also discuss our method in view of these previous calculations. An important impact on half-lives comes from nuclear ES decays, while including electronic temperatures yields further increases of about 20\% at energies 10-30 keV, typical of AGB stars of moderate mass (Mâ‰Č8 M⊙M \lesssim 8~M_{\odot}). Despite properly considering these effects, the new rates remain sensitively lower than the TY values, implying longer half-lives at least above 8-9 keV. Our rate predictions are in substantial accord with recent results based on the shell model, and strongly modify branching ratios along the ss-process path previously adopted. With our new rate, nucleosynthesis models well account for the isotopic admixtures of Ba in presolar SiC grains and in the Sun.Comment: 15 pages, 3 figures, 5 tables. Accepted for publication in Ap

    Vortex arrays in neutral trapped Fermi gases through the BCS–BEC crossover

    Get PDF
    Vortex arrays in type-II superconductors reflect the translational symmetry of an infinite system. There are cases, however, such as ultracold trapped Fermi gases and the crust of neutron stars, where finite-size effects make it complex to account for the geometrical arrangement of vortices. Here, we self-consistently generate these arrays of vortices at zero and finite temperature through a microscopic description of the non-homogeneous superfluid based on a differential equation for the local order parameter, obtained by coarse graining the Bogoliubov–de Gennes (BdG) equations. In this way, the strength of the inter-particle interaction is varied along the BCS–BEC crossover, from largely overlapping Cooper pairs in the Bardeen–Cooper–Schrieffer (BCS) limit to dilute composite bosons in the Bose–Einstein condensed (BEC) limit. Detailed comparison with two landmark experiments on ultracold Fermi gases, aimed at revealing the presence of the superfluid phase, brings out several features that make them relevant for other systems in nature as well

    Lithium abundances in AGB stars and a new estimate for the7Be life-time

    Get PDF
    In most cases RGB and AGB stars with M< 2M⊙ destroy Li (which is instead synthesized trough electron-captures on 7Be). This occurs through the combined operation of mixing processes and proton captures, when H-burning operates close to the envelope. Observed Li abundances are however difficult to explain, as they cover a wide spread. Various uncertainties affect model attempts, but so far the largest one concerns the processes of bound and free e- captures on 7Be, hence its life-time, whose known estimates are valid only for solar conditions. RGB and AGB stages have temperatures and densities below the envelope covering a wide range and differing from solar by up to a factor of five for T and up to five orders of magnitudes for ρ, hence extrapolations are unreliable. Recently, we presented an estimate of the 7Be half-life based on a fully quantistic method that goes beyond the Debye-Huckel approximation. Here we discuss its consequences on Li nucleosynthesis in low mass AGB stars

    Energy Deposition around Swift Carbon-Ion Tracks in Liquid Water

    Get PDF
    Energetic carbon ions are promising projectiles used for cancer radiotherapy. A thorough knowledge of how the energy of these ions is deposited in biological media (mainly composed of liquid water) is required. This can be attained by means of detailed computer simulations, both macroscopically (relevant for appropriately delivering the dose) and at the nanoscale (important for determining the inflicted radiobiological damage). The energy lost per unit path length (i.e., the so-called stopping power) of carbon ions is here theoretically calculated within the dielectric formalism from the excitation spectrum of liquid water obtained from two complementary approaches (one relying on an optical-data model and the other exclusively on ab initio calculations). In addition, the energy carried at the nanometre scale by the generated secondary electrons around the ion's path is simulated by means of a detailed Monte Carlo code. For this purpose, we use the ion and electron cross sections calculated by means of state-of-the art approaches suited to take into account the condensed-phase nature of the liquid water target. As a result of these simulations, the radial dose around the ion's path is obtained, as well as the distributions of clustered events in nanometric volumes similar to the dimensions of DNA convolutions, contributing to the biological damage for carbon ions in a wide energy range, covering from the plateau to the maximum of the Bragg peak

    Mixed ab initio quantum mechanical and Monte Carlo calculations of secondary emission from SiO2 nanoclusters

    Full text link
    A mixed quantum mechanical and Monte Carlo method for calculating Auger spectra from nanoclusters is presented. The approach, based on a cluster method, consists of two steps. Ab initio quantum mechanical calculations are first performed to obtain accurate energy and probability distributions of the generated Auger electrons. In a second step, using the calculated line shape as electron source, the Monte Carlo method is used to simulate the effect of inelastic losses on the original Auger line shape. The resulting spectrum can be directly compared to 'as-acquired' experimental spectra, thus avoiding background subtraction or deconvolution procedures. As a case study, the O K-LL spectrum from solid SiO2 is considered. Spectra computed before or after the electron has traveled through the solid, i.e., unaffected or affected by extrinsic energy losses, are compared to the pertinent experimental spectra measured within our group. Both transition energies and relative intensities are well reproduced.Comment: 9 pageg, 5 figure
    • 

    corecore