4,274 research outputs found

    Auxiliary field method and analytical solutions of the Schr\"{o}dinger equation with exponential potentials

    Full text link
    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies and eigenvectors of the Schr\"{o}dinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schr\"{o}dinger equation with exponential potentials of the form αrλexp(βr)-\alpha r^\lambda \exp(-\beta r) can also be analytically solved by using the auxiliary field method. Formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn on the Yukawa potential and the pure exponential one

    Extensions of the auxiliary field method to solve Schr\"{o}dinger equations

    Full text link
    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schr\"{o}dinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r)V(r) starting from the analytically known spectrum of a particular potential P(r)P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r)P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r)+V(r)a P(r)+V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed

    Influence of anisotropic ion shape, asymmetric valency, and electrolyte concentration on structural and thermodynamic properties of an electric double layer

    Full text link
    Grand canonical Monte Carlo simulation results are reported for an electric double layer modelled by a planar charged hard wall, anisotropic shape cations, and spherical anions at different electrolyte concentrations and asymmetric valencies. The cations consist of two tangentially tethered hard spheres of the same diameter, dd. One sphere is charged while the other is neutral. Spherical anions are charged hard spheres of diameter dd. The ion valency asymmetry 1:2 and 2:1 is considered, with the ions being immersed in a solvent mimicked by a continuum dielectric medium at standard temperature. The simulations are carried out for the following electrolyte concentrations: 0.1, 1.0 and 2.0 M. Profiles of the electrode-ion, electrode-neutral sphere singlet distributions, the average orientation of dimers, and the mean electrostatic potential are calculated for a given electrode surface charge, σ\sigma, while the contact electrode potential and the differential capacitance are presented for varying electrode charge. With an increasing electrolyte concentration, the shape of differential capacitance curve changes from that with a minimum surrounded by maxima into that of a distorted single maximum. For a 2:1 electrolyte, the maximum is located at a small negative σ\sigma value while for 1:2, at a small positive value.Comment: 10 pages, 6 figure

    Double layer for hard spheres with an off-center charge

    Full text link
    Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model) or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i) the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii) the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.Comment: 11 pages, 7 figure

    A (p/E) Calculation of Strong Pionic Decays of Baryons

    Get PDF
    Strong pionic decays of baryons are studied in a non-relativistic quark model framework via a convergent (p/E) expansion of the transition operator. Results are compared to the ones obtained within a more conventional (p/m) expansion.Comment: 16 pages, LaTeX, using amssymb.st

    The few-body problem in terms of correlated gaussians

    Full text link
    In their textbook, Suzuki and Varga [Y. Suzuki and K. Varga, {\em Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems} (Springer, Berlin, 1998)] present the stochastic variational method in a very exhaustive way. In this framework, the so-called correlated gaussian bases are often employed. General formulae for the matrix elements of various operators can be found in the textbook. However the Fourier transform of correlated gaussians and their application to the management of a relativistic kinetic energy operator are missing and cannot be found in the literature. In this paper we present these interesting formulae. We give also a derivation for new formulations concerning central potentials; the corresponding formulae are more efficient numerically than those presented in the textbook.Comment: 10 page

    Semirelativistic Hamiltonians and the auxiliary field method

    Full text link
    Approximate analytical closed energy formulas for semirelativistic Hamiltonians of the form σp2+m2+V(r)\sigma\sqrt{\bm p^{2}+m^2}+V(r) are obtained within the framework of the auxiliary field method. This method, which is equivalent to the envelope theory, has been recently proposed as a powerful tool to get approximate analytical solutions of the Schr\"odinger equation. Various shapes for the potential V(r)V(r) are investigated: power-law, funnel, square root, and Yukawa. A comparison with the exact results is discussed in detail

    Synthesis of sub-5 nm Co-doped SnO2_2 nanoparticles and their structural, microstructural, optical and photocatalytic properties

    Full text link
    A swift chemical route to synthesize Co-doped SnO2_2 nanopowders is described. Pure and highly stable Sn1x_{1-x}Cox_xO2δ_{2-\delta} (0 \le x \le 0.15) crystalline nanoparticles were synthesized, with mean grain sizes < 5 nm and the dopant element homogeneously distributed in substitutional sites of the SnO2_2 matrix. The UV-visible diffuse reflectance spectra of the Sn1x_{1-x}Cox_xO2δ_{2-\delta} samples reveal red shifts, the optical bandgap energies decreasing with increasing Co concentration. The Urbach energies of the samples were calculated and correlated with their bandgap energies. The photocatalytic activity of the Sn1x_{1-x}Cox_xO2δ_{2-\delta} samples was investigated for the 4-hydroxylbenzoic acid (4-HBA) degradation process. A complete photodegradation of a 10 ppm 4-HBA solution was achieved using 0.02% (w/w) of Sn0.95_{0.95}Co0.05_{0.05}O2δ_{2-\delta} nanoparticles in 60 min of irradiation.Comment: 29 pages, 2 tables, 10 figure

    Argon assisted chemical vapor deposition of CrO2_2: an efficient process leading to high quality epitaxial films

    Full text link
    A comparative study of the structural, microstructural and magnetic properties of CrO2_2 thin films grown onto (110) and (100) TiO2_2 rutile single crystal substrates by chemical vapor deposition (CVD), using CrO3_3 as chromium precursor and either oxygen or argon as carrier gas is presented. Our results show that growth under argon carrier gas leads to high quality CrO2_2 epilayers with structural and magnetic properties similar to those obtained using the more standard oxygen carrier gas. Furthermore, we interpret the larger magnetic coercivity observed for the (110) oriented films in terms of their microstructure, in particular of the highest strain and edge roughness of the building structures of the CrO2_2 epilayers, which are settled by the substrate crystallographic orientation.Comment: 27 pages, 2 tables, 8 figure
    corecore