200 research outputs found

    Assessment of antibacterial activity of three plants used in Pakistan to cure respiratory diseases

    Get PDF
    The in vitro antimicrobial activity of Justicia adhatoda, Glycyrrhiza glabra and Hyssopus officinalis extracts were studied against selected bacteria by using agar well diffusion assay. Methanol, ethanol, chloroform, diethyl-ether and aqueous extracts were tested in crude form for antibacterial activity against Bacillus subtillus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium and Staphylococcus aureus. Maximum antibacterial activity was exhibited by all the three plant extracts. The results obtained with P. aeruginosa were particularly interesting since it was not inhibited by the antibiotic used but the tested plant extracts effectively inhibited the growth of P. aeruginosa. Themethanolic extract of J. adhatoda was effective against S. typhimurium. All the plants extract in water were effective against spore forming of B. subtillus while S. aureus and E. coli were not effectively inhibited by extracts of tested plants. The results of analysis of variance have shown significant differences between the species, treatments and interaction between the species and treatments. However, the differences were non-significant between the treatments for G. glabra. The results indicatethat J. adhatoda, G. glabra and H. officinalis present a noteworthy potential of antibacterial activities

    Additional Pathogenic Pathways in RBCK1 Deficiency

    Full text link
    RBCK1 deficiency is a rare congenital autoinflammatory disease that causes inflammatory disruption on the molecular level. This deficiency has three major clinical manifestations: increased sensitivity to bacterial infections, autoinflammation syndrome, and the accumulation of amylopectin in skeletal muscle. The amylopectinosis causes myopathy and cardiomyopathy. The pathogenesis of the disease is poorly investigated and may include unnoticed relationships. We performed gene expression analysis on patients with RBCK1 deficiency and three other autoinflammatory diseases. The identification of differentially expressed genes revealed a large number of downregulated genes that are involved in the activation of essential metabolic and immune pathways, including NF-kB and Pi3k-Akt-mTOR. Signaling pathways were analysed using the KEGG (Kyoto Encyclopedia of Genes and Genomes) and Gene Ontology resource. Predicted protein-protein interactions were retrieved from the STRING (Search Tool for the Retrieval of Interacting proteins database). Besides the primary involvement of RBCK1 in disease pathology, several downregulated pathways aggravate symptoms of myopathy, cardiomyopathy, and bacterial disease. The studied pathways may serve as new targets for the development of compensatory therapies for patients with RBCK1 deficiency. © 2022, Mathematical Biology and Bioinformatics. All rights reserved

    Accelerating the laser-induced demagnetization of a ferromagnetic film by antiferromagnetic order in an adjacent layer

    Get PDF
    We study the ultrafast demagnetization of Ni/NiMn and Co/NiMn ferromagnetic/antiferromagnetic bilayer systems after excitation by a laser pulse. We probe the ferromagnetic order of Ni and Co using magnetic circular dichroism in time-resolved pump-probe resonant x-ray reflectivity. Tuning the sample temperature across the antiferromagnetic ordering temperature of the NiMn layer allows us to investigate effects induced by the magnetic order of the latter. The presence of antiferromagnetic order in NiMn speeds up the demagnetization of the ferromagnetic layer, which is attributed to bidirectional laser-induced superdiffusive spin currents between the ferromagnetic and the antiferromagnetic layer

    Predicting the Most Deleterious Missense Nonsynonymous Single-Nucleotide Polymorphisms of Hennekam Syndrome-Causing CCBE1 Gene, in Silico Analysis

    Full text link
    Hennekam lymphangiectasia-lymphedema syndrome has been linked to single-nucleotide polymorphisms in the CCBE1 (collagen and calcium-binding EGF domains 1) gene. Several bioinformatics methods were used to find the most dangerous nsSNPs that could affect CCBE1 structure and function. Using state-of-the-art in silico tools, this study examined the most pathogenic nonsynonymous single-nucleotide polymorphisms (nsSNPs) that disrupt the CCBE1 protein and extracellular matrix remodeling and migration. Our results indicate that seven nsSNPs, rs115982879, rs149792489, rs374941368, rs121908254, rs149531418, rs121908251, and rs372499913, are deleterious in the CCBE1 gene, four (G330E, C102S, C174R, and G107D) of which are the highly deleterious, two of them (G330E and G107D) have never been seen reported in the context of Hennekam syndrome. Twelve missense SNPs, rs199902030, rs267605221, rs37517418, rs80008675, rs116596858, rs116675104, rs121908252, rs147974432, rs147681552, rs192224843, rs139059968, and rs148498685, are found to revert into stop codons. Structural homology-based methods and sequence homology-based tools revealed that 8.8% of the nsSNPs are pathogenic. SIFT, PolyPhen2, M-CAP, CADD, FATHMM-MKL, DANN, PANTHER, Mutation Taster, LRT, and SNAP2 had a significant score for identifying deleterious nsSNPs. The importance of rs374941368 and rs200149541 in the prediction of post-translation changes was highlighted because it impacts a possible phosphorylation site. Gene-gene interactions revealed CCBE1's association with other genes, showing its role in a number of pathways and coexpressions. The top 16 deleterious nsSNPs found in this research should be investigated further in the future while researching diseases caused CCBE1 gene specifically HS. The FT web server predicted amino acid residues involved in the ligand-binding site of the CCBE1 protein, and two of the substitutions (R167W and T153N) were found to be involved. These highly deleterious nsSNPs can be used as marker pathogenic variants in the mutational diagnosis of the HS syndrome, and this research also offers potential insights that will aid in the development of precision medicines. CCBE1 proteins from Hennekam syndrome patients should be tested in animal models for this purpose. © 2021 Khyber Shinwari et al.The work was carried out within the framework of state research at the Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, project number AAAA-A21-121012090091-6

    Australian bat lyssavirus infection in two horses

    Get PDF
    In May 2013, the first cases of Australian bat lyssavirus infections in domestic animals were identified in Australia. Two horses (filly-H1 and gelding-H2) were infected with the Yellow-bellied sheathtail bat (YBST) variant of Australian bat lyssavirus (ABLV). The horses presented with neurological signs, pyrexia and progressing ataxia. Intra-cytoplasmic inclusion bodies (Negri bodies) were detected in some Purkinje neurons in haematoxylin and eosin (H&E) stained sections from the brain of one of the two infected horses (H2) by histological examination. A morphological diagnosis of sub-acute moderate non-suppurative, predominantly angiocentric, meningo-encephalomyelitis of viral aetiology was made. The presumptive diagnosis of ABLV infection was confirmed by the positive testing of the affected brain tissue from (H2) in a range of laboratory tests including fluorescent antibody test (FAT) and real-time PCR targeting the nucleocapsid (N) gene. Retrospective testing of the oral swab from (H1) in the real-time PCR also returned a positive result. The FAT and immunohistochemistry (IHC) revealed an abundance of ABLV antigen throughout the examined brain sections. ABLV was isolated from the brain (H2) and oral swab/saliva (H1) in the neuroblastoma cell line (MNA). Alignment of the genome sequence revealed a 97.7% identity with the YBST ABLV strain

    Analysis of the TREC and KREC Levels in the Dried Blood Spots of Healthy Newborns with Different Gestational Ages and Weights

    Full text link
    Inborn errors of immunity can be detected by evaluating circular DNA (cDNA) fragments of T-and B-cell receptors (TREC and KREC) resulting from the receptor gene rearrangement in T and B cells. Maturation and activation of the fetal immune system is known to proceed gradually according to the gestational age, which highlights the importance of the immune status in premature infants at different gestational ages. In this article, we evaluated TREC and KREC levels in infants of various gestational ages by real-time PCR with taking into account the newborn’s weight and sex. The 95% confidence intervals for TREC and KREC levels (expressed in the number of cDNA copies per 105 cells) were established for different gestational groups. The importance of studying immune system development in newborns is informed by the discovered dependence of the level of naive markers on the gestational stage in the early neonatal period. © 2022 National Research University Higher School of Economics. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Quantifying signal changes in nano-wire based biosensors

    Get PDF
    In this work, we present a computational methodology for predicting the change in signal (conductance sensitivity) of a nano-BioFET sensor (a sensor based on a biomolecule binding another biomolecule attached to a nano-wire field effect transistor) upon binding its target molecule. The methodology is a combination of the screening model of surface charge sensors in liquids developed by Brandbyge and co-workers [Sørensen et al., Appl. Phys. Lett., 2007, 91, 102105], with the PROPKA method for predicting the pH-dependent charge of proteins and protein-ligand complexes, developed by Jensen and co-workers [Li et al., Proteins: Struct., Funct., Bioinf., 2005, 61, 704-721, Bas et al., Proteins: Struct., Funct., Bioinf., 2008, 73, 765-783]. The predicted change in conductance sensitivity based on this methodology is compared to previously published data on nano-BioFET sensors obtained by other groups. In addition, the conductance sensitivity dependence from various parameters is explored for a standard wire, representative of a typical experimental setup. In general, the experimental data can be reproduced with sufficient accuracy to help interpret them. The method has the potential for even more quantitative predictions when key experimental parameters (such as the charge carrier density of the nano-wire or receptor density on the device surface) can be determined (and reported) more accurately. © 2011 The Royal Society of Chemistry

    In Silico Analysis Revealed Five Novel High-Risk Single-Nucleotide Polymorphisms (rs200384291, rs201163886, rs193141883, rs201139487, and rs201723157) in ELANE Gene Causing Autosomal Dominant Severe Congenital Neutropenia 1 and Cyclic Hematopoiesis

    Full text link
    Single-nucleotide polymorphisms in the ELANE (Elastase, Neutrophil Expressed) gene are associated with severe congenital neutropenia, while the ELANE gene provides instructions for making a protein called neutrophil elastase. We identified disease susceptibility single-nucleotide polymorphisms (SNPs) in the ELANE gene using several computational tools. We used cutting-edge computational techniques to investigate the effects of ELANE mutations on the sequence and structure of the protein. Our study suggested that eight nsSNPs (rs28931611, rs57246956, rs137854448, rs193141883, rs201723157, rs201139487, rs137854451, and rs200384291) are the most deleterious in ELANE gene and disturb protein structure and function. The mutants F218L, R34W, G203S, R193W, and T175M have not yet been identified in patients suffering from SCN and cyclic hematopoiesis, while C71Y, P139R, C151Y, G214R, and G203C reported in our study are already associated with both of the disorders. These mutations are shown to destabilize structure and disrupt ELANE protein activation, splicing, and folding and might diminish trypsin-like serine protease efficiency. Prediction of posttranslation modifications highlighted the significance of deleterious nsSNPs because some of nsSNPs affect potential phosphorylation sites. Gene-gene interactions showed the relation of ELANE with other genes depicting its importance in numerous pathways and coexpressions. We identified the deleterious nsSNPs, constructed mutant protein structures, and evaluated the impact of mutation by employing molecular docking. This research sheds light on how ELANE failure upon mutation results in disease progression, including congenital neutropenia, and validation of these novel predicted nsSNPs is required through the wet lab. © 2022 Khyber Shinwari et al.Ural Branch, Russian Academy of Sciences, UB RAS: AAAAA-A21- 121012090091-6The work was carried out in accordance with the state order of the Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, AAAAA-A21- 121012090091-6
    corecore