1,293 research outputs found

    SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2.

    Get PDF
    SIRT1 and SIRT3 are NAD+-dependent protein deacetylases that are evolutionarily conserved across mammals. These proteins are located in the cytoplasm/nucleus and mitochondria, respectively. Previous reports demonstrated that human SIRT1 deacetylates Acetyl-CoA Synthase 1 (AceCS1) in the cytoplasm, whereas SIRT3 deacetylates the homologous Acetyl-CoA Synthase 2 (AceCS2) in the mitochondria. We recently showed that 3-hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2) is deacetylated by SIRT3 in mitochondria, and we demonstrate here that SIRT1 deacetylates the homologous 3-hydroxy-3-methylglutaryl CoA synthase 1 (HMGCS1) in the cytoplasm. This novel pattern of substrate homology between cytoplasmic SIRT1 and mitochondrial SIRT3 suggests that considering evolutionary relationships between the sirtuins and their substrates may help to identify and understand the functions and interactions of this gene family. In this perspective, we take a first step by characterizing the evolutionary history of the sirtuins and these substrate families

    Unique Conformation of Rh(i) Pillar Complexes Immobilized on Taeniolite

    Full text link
    Rhodium pillar complex with chiral diamine ligands, Rh-Cn-(-)-CHDA, were synthesized and intercalated with various loading amounts in the range of 19 - 26% CEC, Cation Exchange Capacity (CEC) into Lithium Taeniolite (LiTN). These pillared catalysts (Rh-Cn-(-)-CHDA/TN) were characterized by XRD, elementary analysis, and FT-IR. Results of XRD analysis showed that the clearance space of the catalyst interlayer increased proportionally with the alkyl chain length of the ligand with the slope of 0.14 nm/CH2

    Superconductor-insulator quantum phase transition in a single Josephson junction

    Full text link
    The superconductor-to-insulator quantum phase transition in resistively shunted Josephson junctions is investigated by means of path-integral Monte Carlo simulations. This numerical technique allows us to directly access the (previously unexplored) regime of the Josephson-to-charging energy ratios E_J/E_C of order one. Our results unambiguously support an earlier theoretical conjecture, based on renormalization-group calculations, that at T -> 0 the dissipative phase transition occurs at a universal value of the shunt resistance R_S = h/4e^2 for all values E_J/E_C. On the other hand, finite-temperature effects are shown to turn this phase transition into a crossover, which position depends significantly on E_J/E_C, as well as on the dissipation strength and on temperature. The latter effect needs to be taken into account in order to reconcile earlier theoretical predictions with recent experimental results.Comment: 7 pages, 6 figure

    Investigation of Dynamics of Self-Similarly Evolving Magnetic Clouds

    Full text link
    Magnetic clouds (MCs) are "magnetized plasma clouds" moving in the solar wind. MCs transport magnetic flux and helicity away from the Sun. These structures are not stationary but feature temporal evolution. Commonly, simplified MC models are considered. The goal of the present study is to investigate the dynamics of more general, radially expanding MCs. They are considered as cylindrically symmetric magnetic structures with low plasma {\beta}. In order to study MC`evolution the self-similar approach method and a numerical approach are used. It is shown that the forces are balanced in the considered self-similarly evolving, cylindrically symmetric magnetic structures. Explicit analytical expressions for magnetic field, plasma velocity, density and pressure within MCs are derived. These solutions are characterized by conserved values of magnetic flux and helicity. We also investigate the dynamics of self-similarly evolving MCs by means of the numerical code "Graale". In addition, their expansion in a medium with higher density and higher plasma {\beta} is studied. It is shown that the physical parameters of the MCs maintain their self-similar character throughout their evolution. Conclusions. A comparison of the different self-similar and numerical solutions allows us to conclude that the evolving MCs are quite adequately described by our self-similar solutions - they retain their self-similar, coherent nature for quite a long time and over large distances from the Sun

    Dynamics of solar wind protons reflected by the Moon

    Get PDF
    Solar system bodies that lack a significant atmosphere and significant internal magnetic fields, such as the Moon and asteroids, have been considered as passive absorbers of the solar wind. However, ion observations near the Moon by the SELENE spacecraft show that a fraction of the impacting solar wind protons are reflected by the surface of the Moon. Using new observations of the velocity spectrum of these reflected protons by the SARA experiment on-board the Chandrayaan-1 spacecraft at the Moon, we show by modeling that the reflection of solar wind protons will affect the global plasma environment. These global perturbations of the ion fluxes and the magnetic fields will depend on microscopic properties of the object's reflecting surface. This solar wind reflection process could explain past ion observations at the Moon, and the process should occur universally at all atmosphereless non-magnetized objects.Comment: 12 pages, 8 figure

    Coulomb Blockade and Coherent Single-Cooper-Pair Tunneling in Single Josephson Junctions

    Full text link
    We have measured the current-voltage characteristics of small-capacitance single Josephson junctions at low temperatures (T < 0.04 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. We have clearly observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance of the SQUID arrays is much higher than the quantum resistance h/e^2 = 26 kohm. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling in the single Josephson junction.Comment: RevTeX, 4 pages with 6 embedded figure

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.
    corecore