286 research outputs found

    Moulting black holes

    Get PDF

    Smooth Horizonless Geometries Deep Inside the Black-Hole Regime

    Get PDF
    This Letter has been highlighted by the editors as an Editor's Suggestion.This Letter has been highlighted by the editors as an Editor's Suggestion

    Advances in the investigation of shock-induced reflectivity of porous carbon

    Get PDF
    AbstractWe studied the behavior of porous carbon compressed by laser-generated shock waves. In particular, we developed a new design for targets, optimized for the investigation of carbon reflectivity at hundred-GPa pressures and eV/k temperatures. Specially designed "two-layer-two materials" targets, comprising porous carbon on transparent substrates, allowed the probing of carbon reflectivity and a quite accurate determination of the position in the P, T plane. This was achieved by the simultaneous measurement of shock breakout times, sample temperature (by optical pyrometry) and uid velocity. The experiments proved the new scheme is reliable and appropriate for reflectivity measurements of thermodynamical states lying out of the standard graphite or diamond hugoniot. An increase of reflectivity in carbon has been observed at 260 GPa and 14,000 K while no increase in reflectivity is found at 200 GPa and 20,000 K. We also discuss the role of numerical simulations in the optimization of target parameters and in clarifying shock dynamics

    Non-Commutative Instantons and the Seiberg-Witten Map

    Get PDF
    We present several results concerning non-commutative instantons and the Seiberg-Witten map. Using a simple ansatz we find a large new class of instanton solutions in arbitrary even dimensional non-commutative Yang-Mills theory. These include the two dimensional ``shift operator'' solutions and the four dimensional Nekrasov-Schwarz instantons as special cases. We also study how the Seiberg-Witten map acts on these instanton solutions. The infinitesimal Seiberg-Witten map is shown to take a very simple form in operator language, and this result is used to give a commutative description of non-commutative instantons. The instanton is found to be singular in commutative variables.Comment: 26 pages, AMS-LaTeX. v2: the formula for the commutative description of the Nekrasov-Schwarz instanton corrected (sec. 4). v3: minor correction

    A review of astrophysics experiments on intense lasers

    Get PDF
    Astrophysics has traditionally been pursued at astronomical observatories and on theorists’ computers. Observations record images from space, and theoretical models are developed to explain the observations. A component often missing has been the ability to test theories and models in an experimental setting where the initial and final states are well characterized. Intense lasers are now being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental testbeds where theory and modeling can be quantitatively tested against data. We describe here several areas of astrophysics—supernovae, supernova remnants, gamma-ray bursts, and giant planets—where laser experiments are under development to test our understanding of these phenomena. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71013/2/PHPAEN-7-5-1641-1.pd

    Brownian motion in AdS/CFT

    Full text link
    We study Brownian motion and the associated Langevin equation in AdS/CFT. The Brownian particle is realized in the bulk spacetime as a probe fundamental string in an asymptotically AdS black hole background, stretching between the AdS boundary and the horizon. The modes on the string are excited by the thermal black hole environment and consequently the string endpoint at the boundary undergoes an erratic motion, which is identified with an external quark in the boundary CFT exhibiting Brownian motion. Semiclassically, the modes on the string are thermally excited due to Hawking radiation, which translates into the random force appearing in the boundary Langevin equation, while the friction in the Langevin equation corresponds to the excitation on the string being absorbed by the black hole. We give a bulk proof of the fluctuation-dissipation theorem relating the random force and friction. This work can be regarded as a step toward understanding the quantum microphysics underlying the fluid-gravity correspondence. We also initiate a study of the properties of the effective membrane or stretched horizon picture of black holes using our bulk description of Brownian motion.Comment: 54 pages (38 pages + 5 appendices), 5 figures. v2: references added, clarifications in 6.2. v3: clarifications, version submitted to JHE

    Massless black holes and black rings as effective geometries of the D1-D5 system

    Get PDF
    We compute correlation functions in the AdS/CFT correspondence to study the emergence of effective spacetime geometries describing complex underlying microstates. The basic argument is that almost all microstates of fixed charges lie close to certain "typical" configurations. These give a universal response to generic probes, which is captured by an emergent geometry. The details of the microstates can only be observed by atypical probes. We compute two point functions in typical ground states of the Ramond sector of the D1-D5 CFT, and compare with bulk two-point functions computed in asymptotically AdS_3 geometries. For large central charge (which leads to a good semiclassical limit), and sufficiently small time separation, a typical Ramond ground state of vanishing R-charge has the M=0 BTZ black hole as its effective description. At large time separation this effective description breaks down. The CFT correlators we compute take over, and give a response whose details depend on the microstate. We also discuss typical states with nonzero R-charge, and argue that the effective geometry should be a singular black ring. Our results support the argument that a black hole geometry should be understood as an effective coarse-grained description that accurately describes the results of certain typical measurements, but breaks down in general.Comment: 47 pages, 4 figures. v2: references added. v3: minor corrections to Appendix A, references adde

    The quantum structure of black holes

    Full text link
    We give an elementary review of black holes in string theory. We discuss black hole entropy from string microstates and Hawking radiation from these states. We then review the structure of 2-charge microstates, and explore how `fractionation' can lead to quantum effects over macroscopic length scales of order the horizon radius.Comment: Review article, 58 pages, 2 figures; references added, note about topics covere
    • …
    corecore