3,271 research outputs found
Atmospheric propagation effects relevant to optical communications
A number of atmospheric phenomena affect the propagation of light. The effects of clear air turbulence are reviewed as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study. Useful information on the atmospheric propagation of light in relation to optical deep space communications to an earth based receiving station is available, however, further data must be generated before such a link can be designed with committed performance
A preliminary weather model for optical communications through the atmosphere
A preliminary weather model is presented for optical propagation through the atmosphere. It can be used to compute the attenuation loss due to the atmosphere for desired link availability statistics. The quantitative results that can be obtained from this model provide good estimates for the atmospheric link budget necessary for the design of an optical communication system. The result is extended to provide for the computation of joint attenuation probability for n sites with uncorrelated weather patterns
Effects of Trade Openness on Economic Growth: The Case of African Countries
The relationship between trade and productivity has not been established theoretically. Some researchers have indeed found some, if not complete, support for the view that increasing openness has a positive impact on productivity. This study used a Cobb-Douglas production function as in Miller and Upadhyay (2000) to estimate the impact of FDI, exchange rate, capital-labor ratio and trade openness on GDP for 38 African countries from 1980 to 2008. Data were transformed to natural logs and estimated using alternative panel models; which included one- or-two-way fixed or random effects models. The results found trade openness having a positive relationship with GDP; which is comparable to findings of Ahmed et al.; (2008).Trade Openness, Productivity, Africa, Cobb Douglas Production Function., International Development, International Relations/Trade, Productivity Analysis,
Weldability of Aluminum to Mild Steel Using Friction Welding Process
Friction welding method is one of the most simple, economical and highly productive method in joining dissimilar materials. It is widely used in the automotive, medical and aerospace industrial applications. The purpose of this present work was to assess the development of solid state juncture of dissimilar materials of H30 aluminum and BS970 mild steel. The joints were obtained by Friction Welding (FW) process, which combines the heat generated from friction between two surfaces. The results were analyzed by means of tensile, Rockwell hardness test and metallographic tests. Solid state welding processes are characterized by the absence of melting and the formation of narrow heat affected zone (HAZ). The metallurgical properties are usually excellent and most of the processes can be mechanized or automated to be used as high production rate processes. The FW proves to be a great method for obtaining junctures between dissimilar materials which is not possible by fusion welding process
Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes.
We demonstrated that an antibiotic cocktail (ABX)-perturbed gut microbiome is associated with reduced amyloid-β (Aβ) plaque pathology and astrogliosis in the male amyloid precursor protein (APP)SWE /presenilin 1 (PS1)ΔE9 transgenic model of Aβ amyloidosis. We now show that in an independent, aggressive APPSWE/PS1L166P (APPPS1-21) mouse model of Aβ amyloidosis, an ABX-perturbed gut microbiome is associated with a reduction in Aβ pathology and alterations in microglial morphology, thus establishing the generality of the phenomenon. Most importantly, these latter alterations occur only in brains of male mice, not in the brains of female mice. Furthermore, ABX treatment lead to alterations in levels of selected microglial expressed transcripts indicative of the "M0" homeostatic state in male but not in female mice. Finally, we found that transplants of fecal microbiota from age-matched APPPS1-21 male mice into ABX-treated APPPS1-21 male restores the gut microbiome and partially restores Aβ pathology and microglial morphology, thus demonstrating a causal role of the microbiome in the modulation of Aβ amyloidosis and microglial physiology in mouse models of Aβ amyloidosis
Automatic license plate recognition using pre-processing methods
In this paper, we present a method to automatically detect a vehiclersquos number by usingnbsp pre-processing techniques. We also include image enhancement techniques, edge detection methods, morphological methods including image filling and some techniques like image filling. This paper provides an advantage of effective detection of more number of vehicles compared to the detection using edge detection methods.nbs
Electronic and magnetic excitations in the "half-stuffed" Cu--O planes of BaCuOCl measured by resonant inelastic x-ray scattering
We use resonant inelastic x-ray scattering (RIXS) at the Cu L edge to
measure the charge and spin excitations in the "half-stuffed" Cu--O planes of
the cuprate antiferromagnet BaCuOCl. The RIXS line shape
reveals distinct contributions to the excitations from the two
structurally inequivalent Cu sites, which have different out-of-plane
coordinations. The low-energy response exhibits magnetic excitations. We find a
spin-wave branch whose dispersion follows the symmetry of a CuO sublattice,
similar to the case of the "fully-stuffed" planes of tetragonal CuO (T-CuO).
Its bandwidth is closer to that of a typical cuprate material, such as
SrCuOCl, than it is to that of T-CuO. We interpret this result as
arising from the absence of the effective four-spin inter-sublattice
interactions that act to reduce the bandwidth in T-CuO.Comment: 10 pages, 8 figure
The radical character of the acenes: A density matrix renormalization group study
We present a detailed investigation of the acene series using high-level
wavefunction theory. Our ab-initio Density Matrix Renormalization Group
algorithm has enabled us to carry out Complete Active Space calculations on the
acenes from napthalene to dodecacene correlating the full pi-valence space.
While we find that the ground-state is a singlet for all chain-lengths,
examination of several measures of radical character, including the natural
orbitals, effective number of unpaired electrons, and various correlation
functions, suggests that the longer acene ground-states are polyradical in
nature.Comment: 10 pages, 8 figures, supplementary material, to be published in J.
Chem. Phys. 127, 200
REDHORSE-REcombination and Double crossover detection in Haploid Organisms using next-geneRation SEquencing data
BACKGROUND: Next-generation sequencing technology provides a means to study genetic exchange at a higher resolution than was possible using earlier technologies. However, this improvement presents challenges as the alignments of next generation sequence data to a reference genome cannot be directly used as input to existing detection algorithms, which instead typically use multiple sequence alignments as input. We therefore designed a software suite called REDHORSE that uses genomic alignments, extracts genetic markers, and generates multiple sequence alignments that can be used as input to existing recombination detection algorithms. In addition, REDHORSE implements a custom recombination detection algorithm that makes use of sequence information and genomic positions to accurately detect crossovers. REDHORSE is a portable and platform independent suite that provides efficient analysis of genetic crosses based on Next-generation sequencing data. RESULTS: We demonstrated the utility of REDHORSE using simulated data and real Next-generation sequencing data. The simulated dataset mimicked recombination between two known haploid parental strains and allowed comparison of detected break points against known true break points to assess performance of recombination detection algorithms. A newly generated NGS dataset from a genetic cross of Toxoplasma gondii allowed us to demonstrate our pipeline. REDHORSE successfully extracted the relevant genetic markers and was able to transform the read alignments from NGS to the genome to generate multiple sequence alignments. Recombination detection algorithm in REDHORSE was able to detect conventional crossovers and double crossovers typically associated with gene conversions whilst filtering out artifacts that might have been introduced during sequencing or alignment. REDHORSE outperformed other commonly used recombination detection algorithms in finding conventional crossovers. In addition, REDHORSE was the only algorithm that was able to detect double crossovers. CONCLUSION: REDHORSE is an efficient analytical pipeline that serves as a bridge between genomic alignments and existing recombination detection algorithms. Moreover, REDHORSE is equipped with a recombination detection algorithm specifically designed for Next-generation sequencing data. REDHORSE is portable, platform independent Java based utility that provides efficient analysis of genetic crosses based on Next-generation sequencing data. REDHORSE is available at http://redhorse.sourceforge.net/. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1309-7) contains supplementary material, which is available to authorized users
Synthesis and characterization of metal oxide promoted alumina catalyst for biofuel production
Alumina has been widely used as a support in catalysis process which owing to its extremely thermal and mechanical stability, high surface area, large pore size and pore volume. The aim of this study was to synthesize calcium oxide-supported basic alumina catalysts (CaO/Al2O3) by impregnation method and to characterize the properties of the catalyst based on its surface area and porosity, functional group, surface morphology and particle size. Impregnation method was chosen for the synthesization of catalyst which involved contacting the support with the impregnating solution for a particular period of time, drying the support to remove the imbibed liquid and calcination process. In the preparation of catalyst, catalytic performance of CaO/Al2O3 catalyst was measured at different calcined temperatures (650°C, 750°C and 800°C). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Mercury intrusion porosimetry (MIP), and particle size analyzer (Zetasizer) was used to characterize the catalyst. The highest total specific area and the total porosity of the catalyst was obtained at 750oC. FTIR analysis basically studied on the functional groups present in each catalyst synthesized, while SEM analysis was observed to have pores on its surface. Moreover, CaO/Al2O3 catalysts at 650°C produced the smallest particle size (396.1 mn), while at 750°C produced the largest particle size (712.4 mn). Thus it can be concluded that CaO/Al2O3 catalysts has great potential coimnercialization since CaO has attracted many attentions compared to other alkali earth metal oxides especially on the transesterification reaction
- …
