879 research outputs found
Elliptic CR-manifolds and shear invariant ODE with additional symmetries
We classify the ODEs that correspond to elliptic CR-manifolds with maximal
isotropy. It follows that the dimension of the isotropy group of an elliptic
CR-manifold can be only 10 (for the quadric), 4 (for the listed examples) or
less. This is in contrast with the situation of hyperbolic CR-manifolds, where
the dimension can be 10 (for the quadric), 6 or 5 (for semi-quadrics) or less
than 4. We also prove that, for all elliptic CR-manifolds with non-linearizable
istropy group, except for two special manifolds, the points with
non-linearizable isotropy form exactly some complex curve on the manifold
In vivo measurement of the sagittal depth of the anterior corneal surface
In vivo measurement of the sagittal depth of the anterior corneal surfac
Recommended from our members
Self-calibrating highly sensitive dynamic capacitance sensor: Towards rapid sensing and counting of particles in laminar flow systems
In this report we propose a sensor architecture and a corresponding read-out technique on silicon for the detection of dynamic capacitance change. This approach can be applied to rapid particle counting and single particle sensing in a fluidic system. The sensing principle is based on capacitance variation of an interdigitated electrode (IDE) structure embedded in an oscillator circuit. The capacitance scaling of the IDE results in frequency modulation of the oscillator. A demodulator architecture is employed to provide a read-out of the frequency modulation caused by the capacitance change. A self-calibrating technique is employed at the read-out amplifier stage. The capacitance variation of the IDE due to particle flow causing frequency modulation and the corresponding demodulator read-out has been analytically modelled. Experimental verification of the established model and the functionality of the sensor chip were shown using a modulating capacitor independent of fluidic integration. The initial results show that the sensor is capable of detecting frequency changes of the order of 100 parts per million (PPM), which translates to a shift of 1.43 MHz at 14.3 GHz operating frequency. It is also shown that a capacitance change every 3 μs can be accurately detected
Missing-row reconstruction in the system (2×1)O/Ag(110): A surface extended x-ray-absorption fine-structure study
Oxygen K-edge surface extended x-ray-absorption fine-structure studies on the (2×1)O/Ag(110) system confirm the long-bridge adsorption site with a nearest-neighbor O-Ag bond length of 2.05±0.03 Å. They show that oxygen adsorbs close to the surface inducing a reconstruction of the missing-row type. Structural similarities of the (2×1)O phases on Ni(110), Cu(110), and Ag(110) are discussed
Field theoretic approach to the counting problem of Hamiltonian cycles of graphs
A Hamiltonian cycle of a graph is a closed path that visits each site once
and only once. I study a field theoretic representation for the number of
Hamiltonian cycles for arbitrary graphs. By integrating out quadratic
fluctuations around the saddle point, one obtains an estimate for the number
which reflects characteristics of graphs well. The accuracy of the estimate is
verified by applying it to 2d square lattices with various boundary conditions.
This is the first example of extracting meaningful information from the
quadratic approximation to the field theory representation.Comment: 5 pages, 3 figures, uses epsf.sty. Estimates for the site entropy and
the gamma exponent indicated explicitl
The chromosphere: gateway to the corona, or the purgatory of solar physics?
I argue that one should attempt to understand the solar chromosphere not only
for its own sake, but also if one is interested in the physics of: the corona;
astrophysical dynamos; space weather; partially ionized plasmas; heliospheric
UV radiation; the transition region. I outline curious observations which I
personally find puzzling and deserving of attention.Comment: To appear in the proceedings of the 25th NSO Workshop "Chromospheric
Structure and Dynamics. From Old Wisdom to New Insights", Memorie della
Societa' Astronomica Italiana, Eds. Tritschler et a
Hamiltonian walks on Sierpinski and n-simplex fractals
We study Hamiltonian walks (HWs) on Sierpinski and --simplex fractals. Via
numerical analysis of exact recursion relations for the number of HWs we
calculate the connectivity constant and find the asymptotic behaviour
of the number of HWs. Depending on whether or not the polymer collapse
transition is possible on a studied lattice, different scaling relations for
the number of HWs are obtained. These relations are in general different from
the well-known form characteristic of homogeneous lattices which has thus far
been assumed to hold for fractal lattices too.Comment: 22 pages, 6 figures; final versio
Dual-Band Transmitter and Receiver with Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222 - 270 GHz
This paper presents a transmitter (TX) and a receiver (RX) with bowtie-antenna and silicon lens for gas spectroscopy at 222-270 GHz, which are fabricated in IHP’s 0.13 μm SiGe BiCMOS technology. The TX and RX use two integrated local oscillators for 222 – 256 GHz and 250 – 270 GHz, which are switched for dual-band operation. Due to its directivity of about 27 dBi, the single integrated bowtie-antenna with silicon lens enables an EIRP of about 25 dBm for the TX, and therefore a considerably higher EIRP for the 2-band TX compared to previously reported systems. The double sideband noise temperature of the RX is 20,000 K (18.5 dB noise figure) as measured by the Y-factor method. Absorption spectroscopy of gaseous methanol is used as a measure for the performance of the gas spectroscopy system with TX- and RX-modules
- …