18 research outputs found

    An “energy-auxotroph” E. coli provides an in vivo platform for assessing NADH regeneration systems

    No full text
    Abstract An efficient in vivo regeneration of the primary cellular resources NADH and ATP is vital for optimizing the production of value-added chemicals and enabling the activity of synthetic pathways. Currently, such regeneration routes are tested and characterized mainly in vitro before being introduced into the cell. However, in vitro measurements could be misleading as they do not reflect enzyme activity under physiological conditions. Here, we construct an in vivo platform to test and compare NADH regeneration systems. By deleting dihydrolipoyl dehydrogenase in Escherichia coli, we abolish the activity of pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase. When cultivated on acetate, the resulting strain is auxotrophic to NADH and ATP: acetate can be assimilated via the glyoxylate shunt but cannot be oxidized to provide the cell with reducing power and energy. This strain can therefore serve to select for and test different NADH regeneration routes. We exemplify this by comparing several NAD-dependent formate dehydrogenases and methanol dehydrogenases. We identify the most efficient enzyme variants under in vivo conditions and pinpoint optimal feedstock concentrations that maximize NADH biosynthesis while avoiding cellular toxicity. Our strain thus provides a useful platform for comparing and optimizing enzymatic systems for cofactor regeneration under physiological conditions. This article is protected by copyright. All rights reserved

    Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs

    No full text
    The recognition that individual GPCRs can activate multiple signaling pathways has raised the possibility of developing drugs selectively targeting therapeutically relevant ones. This requires tools to determine which G proteins and βarrestins are activated by a given receptor. Here, we present a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA). Unlike most of the existing detection systems, EMTA does not require modification of receptors or G proteins (except for G(s)). EMTA was found to be suitable for the detection of constitutive activity, inverse agonism, biased signaling and polypharmacology. Profiling of 100 therapeutically relevant human GPCRs resulted in 1500 pathway-specific concentration-response curves and revealed a great diversity of coupling profiles ranging from exquisite selectivity to broad promiscuity. Overall, this work describes unique resources for studying the complexities underlying GPCR signaling and pharmacology

    Methionine- and choline-deficient diet induces hepatic changes characteristic of non-alcoholic steatohepatitis

    No full text
    CONTEXT: Non-alcoholic steatohepatitis is a disease with a high incidence, difficult diagnosis, and as yet no effective treatment. So, the use of experimental models for non-alcoholic steatohepatitis induction and the study of its routes of development have been studied. OBJECTIVES: This study was designed to develop an experimental model of non-alcoholic steatohepatitis based on a methionine- and choline-deficient diet that is manufactured in Brazil so as to evaluate the liver alterations resulting from the disorder. METHODS: Thirty male C57BL6 mice divided in two groups (n = 15) were used: the experimental group fed a methionine- and choline-deficient diet manufactured by Brazilian company PragSoluções®, and the control group fed a normal diet, for a period of 2 weeks. The animals were then killed by exsanguination to sample blood for systemic biochemical analyses, and subsequently submitted to laparotomy with total hepatectomy and preparation of the material for histological analysis. The statistical analysis was done using the Student's t-test for independent samples, with significance level of 5%. RESULTS: The mice that received the methionine- and choline-deficient diet showed weight loss and significant increase in hepatic damage enzymes, as well as decreased systemic levels of glycemia, triglycerides, total cholesterol, HDL and VLDL. The diagnosis of non-alcoholic steatohepatitis was performed in 100% of the mice that were fed the methionine- and choline-deficient diet. All non-alcoholic steatohepatitis animals showed some degree of macrovesicular steatosis, ballooning, and inflammatory process. None of the animals which were fed the control diet presented histological alterations. All non-alcoholic steatohepatitis animals showed significantly increased lipoperoxidation and antioxidant enzyme GSH activity. CONCLUSION: The low cost and easily accessible methionine- and choline-deficient diet explored in this study is highly effective in inducing steatosis and steatohepatitis in animal model, alterations that are similar to those observed in human livers

    Design and Synthesis of Systemically Active Metabotropic Glutamate Subtype-2 and -3 (mGlu 2/3

    No full text
    [Image: see text] As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure–activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu(2) receptor PAMs and no activity at mGlu(3). Compound optimization led to the identification of potent mGlu(2/3) selective PAMs with no in vitro activity at mGlu(1,4–8) or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu(2) and PAM activity at mGlu(3). The most potent mGlu(2/3) PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu(2/3) PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu(2/3) receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology
    corecore