764 research outputs found

    Development of Atmospheric Monitoring System at Akeno Observatory for the Telescope Array Project

    Get PDF
    We have developed an atmospheric monitoring system for the Telescope Array experiment at Akeno Observatory. It consists of a Nd:YAG laser with an alt-azimuth shooting system and a small light receiver. This system is installed inside an air conditioned weather-proof dome. All parts, including the dome, laser, shooter, receiver, and optical devices are fully controlled by a personal computer utilizing the Linux operating system. It is now operated as a back-scattering LIDAR System. For the Telescope Array experiment, to estimate energy reliably and to obtain the correct shower development profile, the light transmittance in the atmosphere needs to be calibrated with high accuracy. Based on observational results using this monitoring system, we consider this LIDAR to be a very powerful technique for Telescope Array experiments. The details of this system and its atmospheric monitoring technique will be discussed.Comment: 24 pages, 13 figures(plus 3 gif files), Published in NIM-A Vol.488, August 200

    Gamow-Teller strength distributions for double-beta-decaying nuclei within continuum-QRPA

    Full text link
    A version of the pn-continuum-QRPA is outlined and applied to describe the Gamow-Teller strength distributions for ββ\beta\beta-decaying open-shell nuclei. The calculation results obtained for the pairs of nuclei 116^{116}Cd-Sn and 130^{130}Te-Xe are compared with available experimental data.Comment: 8 pages, 3 figures, To appear in the proceedings of "Nucleus-2007: Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies" Voronezh, Russia, June 25-29, 200

    Cell-penetrating peptides containing the progesterone receptor polyproline domain inhibits EGF signaling and cell proliferation in lung cancer cells.

    Full text link
    Non-small cell lung cancer (NSCLC) accounts for the majority (80-85%) of all lung cancers. All current available treatments have limited efficacy. The epidermal growth factor receptor (EGFR) plays a critical role in the development and progression of NSCLC, with high EGFR expression associated with increased cell proliferation and poor prognosis. Thus, interfering with EGFR signaling has been shown to effectively reduce cell proliferation and help in the treatment of NSCLC. We previously demonstrated that the progesterone receptor (PR) contains a polyproline domain (PPD) that directly interacts with Src homology 3 (SH3) domain-containing molecules and expression of PR-PPD peptides inhibits NSCLC cell proliferation. In this study, we investigated whether the introduction of PR-PPD by cell-penetrating peptides (CPPs) could inhibit EGF-induced cell proliferation in NSCLC cells. PR-PPD was attached to a cancer-specific CPP, Buforin2 (BR2), to help deliver the PR-PPD into NSCLC cells. Interestingly, addition of BR2-2xPPD peptides containing two PR-PPD repeats was more effective in inhibiting NSCLC proliferation and significantly reduced EGF-induced phosphorylation of Erk1/2. BR2-2xPPD treatment induced cell cycle arrest by inhibiting the expression of cyclin D1 and CDK2 genes in EGFR-wild type A549 cells. Furthermore, the combination treatment of EGFR-tyrosine kinase inhibitors (TKIs), including Gefitinib or Erlotinib, with BR2-2xPPD peptides further suppressed the growth of NSCLC PC9 cells harboring EGFR mutations as compared to EGFR-TKIs treatment alone. Importantly, BR2-2xPPD peptides mediated growth inhibition in acquired Gefitinib- and Erlotinib- resistant lung adenocarcinoma cells. Our data suggests that PR-PPD is the minimal protein domain sufficient to inhibit NSCLC cell growth and has the potential to be developed as a novel NSCLC therapeutic agent

    Lidar observation of ozone over Tsukuba (36 deg N, 140 deg E)

    Get PDF
    An ozone lidar system was installed at the National Institute for Environmental Studies (NIES) in Tsukuba, Japan in March 1988 and has been measuring vertical profiles of ozone (15 - 45 km) since September 1988. The lidar system consists of a XeCl (308 nm) excimer laser, its deuterium Raman shifter (339 nm), a XeF excimer laser (351 nm), a 2 m telescope, a receiving system and a data processing system. The precision of the derived ozone concentration is about 10 percent of an altitude of 40 km for a 4 hr observation. Temperature profiles (30 - 80 km) are also obtained from the Rayleigh scattering signals at 351 nm. Approximate 50 ozone measurements are carried out in a year and variations of vertical profiles of ozone such as seasonal variations and shorter-term variations are observed. Systematic errors due to aerosols had been negligible until the arrival of the stratospheric aerosols injected by the eruption of Mt. Pinatubo. Effects of the volcanic aerosols on ozone measurements depend on the differences between wavelengths used as the on- and off-resonance

    3-D microphysical model studies of Arctic denitrification: comparison with observations

    No full text
    International audienceSimulations of Arctic denitrification using a 3-D chemistry-microphysics transport model are compared with observations for the winters 1994/95, 1996/97 and 1999/2000. The model of Denitrification by Lagrangian Particle Sedimentation (DLAPSE) couples the full chemical scheme of the 3-D chemical transport model, SLIMCAT, with a nitric acid trihydrate (NAT) growth and sedimentation scheme. We use observations from the Microwave Limb Sounder (MLS) and Improved Limb Atmospheric Sounder (ILAS) satellite instruments, the balloon-borne Michelsen Interferometer for Passive Atmospheric Sounding (MIPAS-B), and the in situ NOy instrument on-board the ER-2. As well as directly comparing model results with observations, we also assess the extent to which these observations are able to validate the modelling approach taken. For instance, in 1999/2000 the model captures the temporal development of denitrification observed by the ER-2 from late January into March. However, in this winter the vortex was already highly denitrified by late January so the observations do not provide a strong constraint on the modelled rate of denitrification. The model also reproduces the MLS observations of denitrification in early February 2000. In 1996/97 the model captures the timing and magnitude of denitrification as observed by ILAS, although the lack of observations north of ~67° N in the beginning of February make it difficult to constrain the actual timing of onset. The comparison for this winter does not support previous conclusions that denitrification must be caused by an ice-mediated process. In 1994/95 the model notably underestimates the magnitude of denitrification observed during a single balloon flight of the MIPAS-B instrument. Agreement between model and MLS HNO3 at 68 hPa in mid-February 1995 is significantly better. Sensitivity tests show that a 1.5 K overall decrease in vortex temperatures, or a factor 4 increase in assumed NAT nucleation rates, produce the best statistical fit to MLS observations. Both adjustments would be required to bring the model into agreement with the MIPAS-B observations. The agreement between the model and observations suggests that a NAT-only denitrification scheme (without ice), which was discounted by previous studies, must now be considered as one mechanism for the observed Arctic denitrification. The timing of onset and the rate of denitrification remain poorly constrained by the available observations

    Precision measurement of vector and tensor analyzing powers in elastic deuteron-proton scattering

    Get PDF
    High precision vector and tensor analyzing powers of elastic deuteron-proton d+p scattering have been measured at intermediate energies to investigate effects of three-nucleon forces (3NF). Angular distribution in the range of 70-120 degree in the center-of mass frame for incident-deuteron energies of 130 and 180 MeV were obtained using the RIKEN facility. The beam polarization was unambiguously determined by measuring the 12C(d,alpha)10B(2+) reaction at 0 degree. Results of the measurements are compared with state-of-the-art three-nucleon calculations. The present modeling of nucleon-nucleon forces and its extension to the three-nucleon system is not sufficient to describe the high precision data consistently and requires, therefore, further investigation

    The Anisotropy of Cosmic Ray Arrival Direction around 10^18eV

    Get PDF
    Anisotropy in the arrival directions of cosmic rays around 10^{18}eV is studied using data from the Akeno 20 km^2 array and the Akeno Giant Air Shower Array (AGASA), using a total of about 216,000 showers observed over 15 years above 10^{17}eV. In the first harmonic analysis, we have found significant anisotropy of \sim 4 % around 10^{18}eV, corresponding to a chance probability of 105\sim 10^{-5} after taking the number of independent trials into account. With two dimensional analysis in right ascension and declination, this anisotropy is interpreted as an excess of showers near the directions of the Galactic Center and the Cygnus region. This is a clear evidence for the existence of the galactic cosmic ray up to the energy of 10^{18}eV. Primary particle which contribute this anisotropy may be proton or neutron.Comment: 4pages, three figures, to appear in Procedings of 26th ICRC(Salt Lake City
    corecore