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LIDAR OBSERVATION OF OZONE OVER TSUKUBA (36°N, 140°E)
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ABSTRACT

An ozone lidar system was installed at the National

Institute for Environmental Studies (NIES) in Tsukuba, Japan
in March 1988 and has been measuring vertical profiles of

ozone (15 - 45 km) since September 1988. The lidar system
consists of a XeC1 (308 nm) excimer laser, its deuterium
Raman shifter (339 nm), a XeF excimer laser (351 nm), a 2 m

telescope, a receiving system and a data processing system.
The precision of the derived ozone concentration is about 10%

at an altitude of 40 km for a 4 hr observation. Temperature
profiles (30 - 80 km) are also obtained from the Rayleigh
scattering signals at 351 nm. Approximate 50 ozone
measurements are carried out in a year and variations of
vertical profiles of ozone such as seasonal variations and

shorter-term variations are observed. Systematic errors due to
aerosols had been negligible until the arrival of the

stratospheric aerosols injected by the eruption of Mt.

Pinatubo. Effects of the volcanic aerosols on ozone

measurements depend on the differences between wavelengths
used as the on- and off- resonance.

1. INTRODUCTION

Recently, total ozone in both hemispheres at middle
and high latitudes have been decreasing significantly. These
decreases in the total ozone are especially large in late winter

and early spring at those latitudes, and there are longitudinal
inhomogeneities. Therefore, long-term measurements of
ozone and related species and parameters are important;
especially information on variations of the vertical profiles is
valuable. The Network for the Detection for Stratospheric
Change (NDSC) and related research activities will meet these
requirements.

Lidars (laser radars) are expected to play an important
role in NDSC because they can measure vertical profiles of
ozone, temperature and aerosols with high accuracy and
vertical resolution.

We, at the National Institute for the Environmental

Studies (NIES), installed an ozone lidar system in March
1988 (Sugimoto et al., 1989; Sasano et al., 1989) and have

obtained ozone profiles since September 1988. After

examining the distortions of the signals received and sources
of systematic errors, we archive the ozone profiles.
Comparisons with the data obtained by the SAGE II satellite
sensor show that there are in good agreement with our lidar
data and the SAGE II data (Nakane et al., 1992). As we use a
high power XeF excimer laser as the source of the off-

resonance radiation, we can also measure temperature profiles
utilizing Rayleigh scattering from the stratosphere and

mesosphere. We carried out an intensive observation of the

temperature profiles during the DYANA (DYnamicsAdapted
Network for the Atmosphere) campaign from January 1990
to March 1990 (Nakane et al., 1992).

In this paper, we will describe the ozone lidar system,

its performance and show the results of the first 2.5 years
data. Then, we will mention the effects of the stratospheric

aerosols injected by the eruption of Mt. Pinatubo.

2. NIES OZONE LIDAR SYSTEM

The NIES ozone lidar system consists of two
subsystems; a stratospheric subsystem and a tropospheric
subsystem. As we are interested in the stratospheric system
here, we will describe it briefly. Table 1 is the specifications
of the lidar system. We use an injection-locked XeCI excimer

laser (Lambda Physik EMG160TMSC) as the light source for
the on-resonant wavelength (308 nm) and the same type
injection-locked XeF excimer laser for off-resonant
wavelength (351 nm). A Raman shifter with deuterium partly
converts the XeCI laser radiation to 339 nm radiation whose

intensity depends on the pressure of the gas beeing adjusted to
give comparable signal intensity to that of 308 nm around 40
km in altitude. The intensity of the signals at 351 nm is made

much larger than those of the others in the upper stratosphere
because temperature profiles in the upper stratosphere and
mesosphere are also important for studies on the dynamics
related to ozone variations.

A convex lens with a 60-cm focal length and a flat
window are positioned at the entrance and exit of the Raman
shifter, respectively. The diverging output beam from the
Raman shifter is collimated using an off-axis parabolic mirror
with a 200-cm focal length. A concave lens and an off-axis
parabolic mirror are used as a beam expander for the beam
from the XeF laser. Thus, the laser beams are expanded 3.3
times. The directions of the beams transmitted are the same
for 308 nm and 339 nm radiation and that of the 351 nm

radiation can be independently adjusted. As light absorption
by ozone both at 339 nm and 351 nm is negligible, the

signals received for these wavelengths are useful to check the

alignment of the beams transmitted and potential effects of the
aerosols on the lidar measurements of ozone.

The backscattered light is collected by a telescope with
a 2-m diameter, and then, focused on the chopper for cutting
the light scattered at a low altitude. Though the lenses placed
just before and after the chopper for focusing and collimation
had been single lenses before June 1990, they were replaced
by achromatic lenses. This improvement made the alignment
of the beams transmitted much easier. Dichroic mirrors,
interference filters and color glass filters are used for

wavelength separation. Monochromated light is then divided
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Table 1. Specifications of the NIES ozone lidar system

Transminet
Laser
Waveteagths
Oulpet energy
Pulse repetition rue

Ikam divetgmce

Receiver
Telescope d_unet_
Field of view
Filterbandwidth
Total optical efficiency

De_cmr
PboWmuRipliers
Gate width
P_amplifi_s

Signal processor
Photon counters

Damlm_ce_x

XeF excimer laser XeCI excimcr laser with deuterium Raman shifter
351 nm 308 nm 339 nm

75 mJ 140 nO adjustable
250 Hz (maximum)
94 Hz (typicg)

0.07 mrad 0.07 mrad

2m
0.6 nuad (typical)

2 nm 2 nm 2 nm
<20% < 10% <20%

750 Hz

Hamamatsu R3235 (6 channels)
1 - 200 tts
100 MHz

1 gs gate time, 2048 segments (6 channels)

PDP 11/53

into two by beam splitters (ratio: 95 to 5%) and is focused on
two photomultipliers for each wavelength. The signals from
the two photomultipliers with preamplifiers, we call those
channels high sensitivity (HS) and low sensitivity (LS)
channels, are sent to the discriminators, photon counters and

then the computers. The photomultiplicrs arc replaced with
those with a low signal induced noise (Hamamatsu R3235) in
January 1990. Data acquisition and control of the whole
system are carried out using a minicomputer (I:tDP 11/53).

The tropospheric subsystem has KrF excimer laser
(Lambda Physik EMG 201MSC) and Raman shiftcrs with
hydrogen and deuterium which generate 277,292 and 313 nm
radiation. The signal with a wavelength of 313 nm can be
used for the stratospheric ozone measurements because it has
a good signal-to-noise ratio up to 30 km. This wavelength is
quite useful in the presence of the volcanic aerosols.

3. DATA PROCESSING

The conventional DIAL equation is used for
calculation of the ozone concentration:

N(z)= 2_ 6_(T) 10of_T)l [ ddz ,[-lnn°n(z)t + B +Enoft(z)' I

B = d lnl3on(z)
dz 13o (Z)

E = -2 {oo,_z) - O,oft(z)} (1)

where n(z) is the photoelectron number, _(z) the backscatter-

ing coefficient due to aerosols and air molecules at the altitude

of z, ct(z) the extinction coefficient due to aerosols and air

molecules, o (T) the absorption crosssection of ozone, T the

temperature and N(z) the number density of ozone molecules.
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When no aerosol is assumed in the range of interest, terms, B

and E, are estimated from the air molecule profile which is
given by meteorological measurements using upper-air sondes
or by .atmospheric models.

Though we do not describe the details of the data
processing here, we would like to mention the method for
differentiation in Eq. (1). The differentiation is carded out by
applying a kind of numerical filter which gives the third order
polynomial fitting and differentiation simultaneously. At first

we applied the second order polynomial fitting, however, it
was found to give systematic deviations in the ozone
concentration in the upper stratosphere when we assume
realistic vertical resolution.

Temperature profiles are calculated with the algorithm
proposed by Chanin and Hauchecorn (1984).

4. EXAMPLES OF OZONE AND TEMPERATURE

PROFILES

As three wavelengths are used for measurements of
the stratospheric ozone profiles with the NIES ozone lidar,

ozone profiles can be obtained from the two pairs of received
signals; 308 nm - 351 nm (A-) and 308 nm - 339 nm (B-)
signal pairs. Figure 1 shows an example of the ozone profiles
obtained from A- and B- signal pairs. The agreement is very

good and it is difficult to distinguish the two profiles. This
means first that the effects of the stratospheric aerosols on the
ozone lidar measurements are negligible within the error bars
in this case. This means second that the alignments of the laser
beam transmitted are probably good because laser beams with
a wavelength of 339 nm and 351 nm are independently

aligned. This is a typical example for ozone profiles measured
under good atmospheric conditions before the arrival of the

stratospheric aerosols due to the eruption of Mt. Pinatubo.
Comparison of ozone profiles obtained with the NIES ozone
lidar and SAGE II showed good agreement (Nakane et al.,
1992). Therefore, data obtained with the NIES ozone lidar

under good conditions have sufficient accuracy.
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Fig. 1. Ozone profiles with random errors observed with the

NIES ozone lidar using two wavelength pairs.
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Fig. 2. Ozone concentration observed with the NIES ozone

lidar for 2.5 years at 20 - 40 km.

Figure 2 shows the results of the lidar observation for

2.5 years. Different seasonal variations are shown at different
altitudes, ozone concentration is high in spring and low in
summer and autumn at 20 kin; and high in summer and low in
winter at 30 km and 35 km. The former is the typical seasonal

variation controlled by dynamical processes and the latter by
photochemical processes.

Figure 3 shows temperature profiles observed during
DYANA campaign (Nakane et al., 1992). Rapid increase and
decrease in the temperature can be seen around 55 and 70 km
in attitude, respectively.

5. EFFECTS OF VOLCANIC AEROSOLS ON OZONE
LIDAR MEASUREMENTS

In the presence of heavy volcanic aerosols like those

from Mt. Pinatubo, the wavelength dependence of the
extinction and backscattering coefficient of the aerosols may
cause systematic errors. The behaviors of the systematic
errors were simulated by Sasano et al. (1989) and also by
Browel et al. (1985). The systematic errors due to the

aerosol backscattering, B in Eq.(1), usually give the negative
(positive) error above (below) the peak of the aerosol layer.
The systematic errors due to aerosol extinction, E in Eq.(1), is
usually small and gives positive errors. These systematic
errors should be larger for the larger wavelength differencies
between the on- and off-resonant wavelengths.

Figure 4(a) shows the ozone profiles obtained from
the different wavelength pairs carried out from 10 UT to 14

UT and Fig. 4 (b) is an aerosol profile measured by the large-
scale aerosol lidar in NIES on the same day. There is an

ozone profile obtained from an additional wavelength pair
(308 nm - 313 nm pair; C-pair). An ozone profile was
obtained from the ozonesonde observation carried out by
NIES and Tateno Aerological Observatory (TAO) at 6 UT at
TAO about 500 m from NIES. As there is a time difference of

about 6 hr between the lidar and sonde measurements, the

ozone profiles may not behave the same especially in the
lower stratosphere. The three ozone profiles with different

wavelength pairs agree well in the altitude region with
negligible aerosols. However, those profiles change
systematically as described above where there was the aerosol

layer. Taking the wavelength differences into account, the

correct ozone profile should be close to the C-pair profile.
This profile is not so different with that obtained from the

ozonesonde measurement. This result may suggest the
possibility of the correction of aerosol effects (Sasano, 1988)
if the lidar signals have enough signal-to-noise ratios.

6. CONCLUDING REMARKS

The stratospheric subsystem of the NIES ozone lidar

system is described. The measured vertical profiles have
good accuracy. The observed seasonal variations at 20 - 40

km show ozone variations related to typical dynamical and
photochemical processes, respectively. The effects of the
volcanic stratospheric aerosols on the ozone lidar
measurements are discussed.
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Fig.3. Temperature profiles changing from
January 24 to 26, 1990 during DYANA

campaign (Nakane et al., 1992).
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Fig. 4(a). Ozone profiles obtained from 308 nm - 351 nm (A-),
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on February 26, 1992.
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