109 research outputs found

    The Influence of Anton Chekhov on Samuel Beckett: Inaction and Investment of Hope Into Godot-like Figures in Three Sisters and Waiting for Godot

    Full text link
    Anton Chekhov has been very much influential on modern drama, especially on the Theatre of the Absurd; however, not much work has been done on his influence on the absurdist playwrights. Considering Harold Bloom's definition of ‘influence'—writing “much like” someone in the past—the seminal influence of Chekhov on Beckett is studied in this article. Chekhov in his plays, especially his major plays, very much like Beckett's waiting for Godot, portrays people who are passively waiting and investing their entire hope into Godot-like figures without taking any action. Thus, the sense of ennui, desperation and consequently disappointment of these characters originates from their unreasonable inaction, stagnancy and their passivity while waiting, rather than ‘waiting for Godot figures'. This article tries to show the influence of Chekhov on Samuel Beckett, investigating the similarities in form, atmosphere and theme between Waiting for Godot, the paradigm of the Theatre of the Absurd, and Three Sisters, one of Chekhov's major play

    ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals

    Get PDF
    In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis

    The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare).

    Get PDF
    Responses to prolonged low-temperature treatment of imbibed seeds (vernalization) were examined in barley (Hordeum vulgare). These occurred in two phases: the perception of prolonged cold, which occurred gradually at low temperatures, and the acceleration of reproductive development, which occurred after vernalization. Expression of the VERNALIZATION1 gene (HvVRN1) increased gradually in germinating seedlings during vernalization, both at the shoot apex and in the developing leaves. This occurred in darkness, independently of VERNALIZATION2 (HvVRN2), consistent with the hypothesis that expression of HvVRN1 is induced by prolonged cold independently of daylength flowering-response pathways. After vernalization, expression of HvVRN1 was maintained in the shoot apex and leaves. This was associated with accelerated inflorescence initiation and with down-regulation of HvVRN2 in the leaves. The largest determinant of HvVRN1 expression levels in vernalized plants was the length of seed vernalization treatment. Daylength did not influence HvVRN1 expression levels in shoot apices and typically did not affect expression in leaves. In the leaves of plants that had experienced a saturating seed vernalization treatment, expression of HvVRN1 was higher in long days, however. HvFT1 was expressed in the leaves of these plants in long days, which might account for the elevated HvVRN1 expression. Long-day up-regulation of HvVRN1 was not required for inflorescence initiation, but might accelerate subsequent stages of inflorescence development. Similar responses to seed vernalization were also observed in wheat (Triticum aestivum). These data support the hypothesis that VRN1 is induced by cold during winter to promote spring flowering in vernalization-responsive cereals

    A practical method for optimum seismic design of friction wall dampers

    Get PDF
    Friction control systems have been widely used as one of the efficient and cost effective solutions to control structural damage during strong earthquakes. However, the height-wise distribution of slip loads can significantly affect the seismic performance of the strengthened frames. In this study, a practical design methodology is developed for more efficient design of friction wall dampers by performing extensive nonlinear dynamic analyses on 3, 5, 10, 15, and 20-story RC frames subjected to seven spectrum-compatible design earthquakes and five different slip load distribution patterns. The results show that a uniform cumulative distribution can provide considerably higher energy dissipation capacity than the commonly used uniform slip load pattern. It is also proved that for a set of design earthquakes, there is an optimum range for slip loads that is a function of number of stories. Based on the results of this study, an empirical equation is proposed to calculate a more efficient slip load distribution of friction wall dampers for practical applications. The efficiency of the proposed method is demonstrated through several design examples

    Theoretical assessment of progressive collapse capacity of reinforced concrete structures

    Get PDF
    The progressive collapse behaviour of reinforced concrete (RC) structures requires consideration of material and geometric non-linearity, concrete crushing and rebar fracture. Compressive arch action (CAA) and catenary action (CTA) are the main resisting mechanisms against progressive collapse following a column loss. Hence, many studies have concentrated on the development of CAA and CTA in RC beams, but without considering the effect of bar fracture and the reduction in beam effective depth due to concrete crushing. Taking these additional factors into account, an analytical model to predict the structural behaviour of RC beams under a column removal scenario was developed. The proposed model was evaluated and validated with the available experimental results. The evaluation and validation indicate that the proposed model can provide a reliable assessment of RC beam capacity against progressive collapse

    Minimum Two-Year Follow-Up of Cases with Recurrent Disc Herniation Treated with Microdiscectomy and Posterior Dynamic Transpedicular Stabilisation

    Get PDF
    The objective of this article is to evaluate two-year clinical and radiological follow-up results for patients who were treated with microdiscectomy and posterior dynamic transpedicular stabilisation (PDTS) due to recurrent disc herniation. This article is a prospective clinical study. We conducted microdiscectomy and PDTS (using a cosmic dynamic screw-rod system) in 40 cases (23 males, 17 females) with a diagnosis of recurrent disc herniation. Mean age of included patients was 48.92 ± 12.18 years (range: 21-73 years). Patients were clinically and radiologically evaluated for follow-up for at least two years. Patients’ postoperative clinical results and radiological outcomes were evaluated during the 3rd, 12th, and 24th months after surgery. Forty patients who underwent microdiscectomy and PDTS were followed for a mean of 41 months (range: 24-63 months). Both the Oswestry and VAS scores showed significant improvements two years postoperatively in comparison to preoperative scores (p<0.01). There were no significant differences between any of the three measured radiological parameters (α, LL, IVS) after two years of follow-up (p > 0.05). New recurrent disc herniations were not observed during follow-up in any of the patients. We observed complications in two patients. Performing microdiscectomy and PDTS after recurrent disc herniation can decrease the risk of postoperative segmental instability. This approach reduces the frequency of failed back syndrome with low back pain and sciatica

    Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings

    Get PDF
    The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod–insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states
    corecore