430 research outputs found

    Acute-on-chronic Liver Failure: MELD Score 30-day Mortality Predictability and Etiology in a Pakistani Population

    Full text link
    Background: Cirrhosis is a pathological condition that ultimately leads to liver failure. Acute on chronic liver failure (ACLF) has a high short term mortality rate. Viral hepatitis is the most common cause of liver failure in our local population. We carried out this study to identity the 30-day mortality and etiology of patients presenting with ACLF using Model for End-Stage Liver Disease (MELD) score predictability. Methodology: This was a descriptive case series, conducted at Sheikh Zayed Hospital, Lahore, Pakistan from January 31, 2018 to July 30, 2018. One hundred and eighty five patients who met the inclusion criteria were enrolled using 95% confidence level and 4% margin of error. Data was entered and analyzed with SPSS version 23.0. Numerical variables including age was presented by Mean ± S.D. Categorical variables i.e. gender, etiology of acute-on-chronic liver failure and 30-day mortality were presented by frequency and percentage. Data was stratified for age, gender, duration of chronic liver disease and MELD grade to address the effect modifiers. Post-stratification chi-square test was calculated using 95% significance (p≤0.05). Results: Majority of the enrolled patients were male (74.6%) while only 25.4% of the patients were female. One hundred and thirty patients (70.3%) had underlying viral hepatitis while twelve patients (6.5%) and forty three patients (23.2%) presented with alcoholic liver disease and drug-induced ACLF, respectively. Eighty patients (43.2%) died within 30 days of admission.The 30-day mortality with respect to MELD grade was statistically significant (p<0.001) with the highest mortality noted in grade-IV and thirty five patients (43.8%) dying within 30 days of admission (p<0.001). Grade-II and III MELD scores also contributed to the 30-day mortality with twenty three patients (28.8%) and nineteen patients (23.8%) dying within 30 days of admission (p<0.001). Conclusion: MELD scores are able to accurately predict the short-term mortality in patients with ACLF and viral hepatitis was the most common etiology in our population. Early detection and use of appropriate prognostic models may alleviate mortality and morbidity in paitents with ACLF

    Experimental Characterization of Electrical Discharge Machining of Aluminum 6061 T6 Alloy using Different Dielectrics

    Get PDF
    Electrical discharge machining is a non-traditional machining method broadly employed in industries for machining of parts that have typical profiles and require great accuracy. This paper investigates the effects of electrical parameters: pulse-on-time and current on three performance measures (material removal rate, microstructures and electrode wear rate), using distilled water and kerosene as dielectrics. A comparison between dielectrics for the machining of aluminum 6061 T6 alloy material in terms of performance measures was performed. Aluminum 6061 T6 alloy material was selected, because of its growing use in the automotive and aerospace industrial sectors. The experimental sequence was designed using Taguchi technique of L9 orthogonal array by changing three levels of pulse-on-time and current, and test runs were performed separately for each dielectric. The results obtained show that greater electrode wear rate (EWR) and higher material removal rate (MRR) were achieved with distilled water when compared with kerosene. These greater EWR and MRR responses can be attributed to the early breakage of the weak oxide and carbide layers formed on the tool and alloy material surfaces, respectively. The innovative contributions of this study include, but are not limited to, the possibility of machining of aluminum 6061 T6 alloy with graphite electrode to enhance machinability and fast cutting rate employing two different dielectrics.Peer reviewe

    AM-DisCNT: Angular Multi-hop DIStance based Circular Network Transmission Protocol for WSNs

    Full text link
    The nodes in wireless sensor networks (WSNs) contain limited energy resources, which are needed to transmit data to base station (BS). Routing protocols are designed to reduce the energy consumption. Clustering algorithms are best in this aspect. Such clustering algorithms increase the stability and lifetime of the network. However, every routing protocol is not suitable for heterogeneous environments. AM-DisCNT is proposed and evaluated as a new energy efficient protocol for wireless sensor networks. AM-DisCNT uses circular deployment for even consumption of energy in entire wireless sensor network. Cluster-head selection is on the basis of energy. Highest energy node becomes CH for that round. Energy is again compared in the next round to check the highest energy node of that round. The simulation results show that AM-DisCNT performs better than the existing heterogeneous protocols on the basis of network lifetime, throughput and stability of the system.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks

    Full text link
    In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Memoized Symbolic Execution

    Get PDF
    This paper introduces memoized symbolic execution (Memoise), a novel approach for more efficient application of forward symbolic execution, which is a well-studied technique for systematic exploration of program behaviors based on bounded execution paths. Our key insight is that application of symbolic execution often requires several successive runs of the technique on largely similar underlying problems, e.g., running it once to check a program to find a bug, fixing the bug, and running it again to check the modified program. Memoise introduces a trie-based data structure that stores the key elements of a run of symbolic execution. Maintenance of the trie during successive runs allows re-use of previously computed results of symbolic execution without the need for re-computing them as is traditionally done. Experiments using our prototype embodiment of Memoise show the benefits it holds in various standard scenarios of using symbolic execution, e.g., with iterative deepening of exploration depth, to perform regression analysis, or to enhance coverage

    Multi-objective optimisation for minimum quantity lubrication assisted milling process based on hybrid response surface methodology and multi-objective genetic algorithm

    Get PDF
    © 2019 by SAGE Publications Ltd.Parametric modelling and optimisation play an important role in choosing the best or optimal cutting conditions and parameters during machining to achieve the desirable results. However, analysis of optimisation of minimum quantity lubrication–assisted milling process has not been addressed in detail. Minimum quantity lubrication method is very effective for cost reduction and promotes green machining. Hence, this article focuses on minimum quantity lubrication–assisted milling machining parameters on AISI 1045 material surface roughness and power consumption. A novel low-cost power measurement system is developed to measure the power consumption. A predictive mathematical model is developed for surface roughness and power consumption. The effects of minimum quantity lubrication and machining parameters are examined to determine the optimum conditions with minimum surface roughness and minimum power consumption. Empirical models are developed to predict surface roughness and power of machine tool effectively and accurately using response surface methodology and multi-objective optimisation genetic algorithm. Comparison of results obtained from response surface methodology and multi-objective optimisation genetic algorithm depict that both measured and predicted values have a close agreement. This model could be helpful to select the best combination of end-milling machining parameters to save power consumption and time, consequently, increasing both productivity and profitability.Peer reviewedFinal Published versio

    EFFECT OF DIFFERENT SOLVENTS ON THE CHEMICAL COMPOSITION AND ANTI-DIABETIC ACTIVITY OF ACACIA ARABICA AND ZIZYPHUS MAURITIANA

    Get PDF
    The current study was designed to investigate the effect of solvents on chemical composition and antidiabetic activity of Zizyphus mauritiana and Acacia Arabica extracts. Total five solvents were used for this purpose (100% methanol, 50% aqueous methanol, 100% ethanol, 50% aqueous ethanol and aqueous). The data obtained from the investigation was subjected to the statistical analysis by using analysis of variance technique. The present study revealed that maximum antioxidant activity was attributed to Acacia arabica (96.53 ± 0.46%) followed by Zizyphus mauritiana (94.33 ± 0.52% by 50% aqueous ethanol extracts). Maximum total phenolic content of both Zizyphus mauritiana and Acacia arabica (670.83 ± 1.46 mg GAE/100g and 934.34 ± 0.89 mg GAE/100g) were shown by 50% aqueous ethanol extracts while maximum total flavonoid content (146.36 ± 0.81 mg QE/100 g, 172.52 ± 0.99 mg QE/100 g) was exhibited by 50% aqueous ethanol extract. The maximum (IC 50= 49.63 ± 0.12 µg/mL) antidiabetic activity was found in aqueous extract of Acacia arabica while in Zizyphus mauritiana the aqueous extract indicated excellent (IC 50= 46.90 ± 0.23 µg/mL) antidiabetic activity

    Evaluation of polystyrene petri dish-based method for assessing biofilm formation in vitro by Trichosporon spp. and its comparison with test-tube method

    Get PDF
    Background: Microorganisms growing in a biofilm are associated with chronic and recurrent human infections and are highlyresistant to antimicrobial agents. There are various methods to detect biofilm production such as tube method (TM) and tissueculture plate method followed by microscopic examination by inverted microscope. Objective: This study was conducted tocompare two methods for the detection of biofilms. Methods: In this study, biofilm formation of ten isolates of Trichosporonspp. by test TM (TTM) and polystyrene petri dish method (PDM) was compared. Results: In the TTM, they were weak biofilmproducers as compared to PDM where they were strong biofilms producers. Conclusion: PDM can be safely used to find outpattern of biofilm formation by Trichosporon
    corecore