69 research outputs found

    Clinical validation of a multiplex PCR-based detection assay using saliva or nasopharyngeal samples for SARS-Cov-2, influenza A and B

    Get PDF
    The COVID-19 pandemic has resulted in significant diversion of human and material resources to COVID-19 diagnostics, to the extent that influenza viruses and co-infection in COVID-19 patients remains undocumented and pose serious public-health consequences. We optimized and validated a highly sensitive RT-PCR based multiplex-assay for the detection of SARS-CoV-2, influenza A and B viruses in a single-test. This study evaluated clinical specimens (n = 1411), 1019 saliva and 392 nasopharyngeal swab (NPS), tested using two-assays: FDA-EUA approved SARS-CoV-2 assay that targets N and ORF1ab gene, and the PKamp-RT-PCR based assay that targets SARS-CoV-2, influenza viruses A and B. Of the 1019 saliva samples, 17.0% (174/1019) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [91.9% (160/174) vs. 87.9% (153/174)], respectively. Of the 392 NPS samples, 10.4% (41/392) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [97.5% (40/41) vs. 92.1% (39/41)], respectively. This study presents clinical validation of a multiplex-PCR assay for testing SARS-CoV-2, influenza A and B viruses, using NPS and saliva samples, and demonstrates the feasibility of implementing the assay without disrupting the existing laboratory workflow

    High-Throughput Next-Generation Sequencing Respiratory Viral Panel: A Diagnostic and Epidemiologic Tool for SARS-CoV-2 and Other Viruses

    Get PDF
    Two serious public health challenges have emerged in the current COVID-19 pandemic namely, deficits in SARS-CoV-2 variant monitoring and neglect of other co-circulating respiratory viruses. Additionally, accurate assessment of the evolution, extent, and dynamics of the outbreak is required to understand the transmission of the virus. To address these challenges, we evaluated 533 samples using a high-throughput next-generation sequencing (NGS) respiratory viral panel (RVP) that includes 40 viral pathogens. The performance metrics revealed a PPA, NPA, and accuracy of 95.98%, 85.96%, and 94.4%, respectively. The clade for pangolin lineage B that contains certain distant variants, including P4715L in ORF1ab, Q57H in ORF3a, and S84L in ORF8 covarying with the D614G spike protein mutation, were the most prevalent early in the pandemic in Georgia, USA. The isolates from the same county formed paraphyletic groups, indicating virus transmission between counties. The study demonstrates the clinical and public health utility of the NGS-RVP to identify novel variants that can provide actionable information to prevent or mitigate emerging viral threats and models that provide insights into viral transmission patterns and predict transmission/resurgence of regional outbreaks as well as providing critical information on co-circulating respiratory viruses that might be independent factors contributing to the global disease burden

    Clinical Validation of a Sensitive Test for Saliva Collected in Healthcare and Community Settings with Pooling Utility for Severe Acute Respiratory Syndrome Coronavirus 2 Mass Surveillance

    Get PDF
    The clinical performance of saliva compared with nasopharyngeal swabs (NPSs) has shown conflicting results in healthcare and community settings. In the present study, a total of 429 matched NPS and saliva sample pairs, collected in either healthcare or community setting, were evaluated. Phase-1 (protocol U) tested 240 matched NPS and saliva sample pairs; phase 2 (SalivaAll protocol) tested 189 matched NPS and saliva sample pairs, with an additional sample homogenization step before RNA extraction. A total of 85 saliva samples were evaluated with both protocols. In phase-1, 28.3% (68/240) samples tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from saliva, NPS, or both. The detection rate from saliva was lower compared with that from NPS samples (50.0% versus 89.7%). In phase-2, 50.2% (95/189) samples tested positive for SARS-CoV-2 from saliva, NPS, or both. The detection rate from saliva was higher compared with that from NPS samples (97.8% versus 78.9%). Of the 85 saliva samples evaluated with both protocols, the detection rate was 100% for samples tested with SalivaAll, and 36.7% with protocol U. The limit of detection with SalivaAll protocol was 20 to 60 copies/mL. The pooled testing approach demonstrated a 95% positive and 100% negative percentage agreement. This protocol for saliva samples results in higher sensitivity compared with NPS samples and breaks the barrier to using pooled saliva for SARS-CoV-2 testing

    Proposal of RT-PCReBased Mass Population Screening for Severe Acute Respiratory Syndrome Coronavirus 2 (Coronavirus Disease 2019)

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing has lagged in many countries because of test kit shortages and analytical process bottlenecks. This study investigated the feasibility and accuracy of a sample pooling approach for wide-scale population screening for coronavirus disease 2019. A total of 940 nasopharyngeal swab samples (934 negative and 6 positive) previously tested for SARS-CoV-2 were deidentified and assigned random numbers for analysis, and 94 pools of 10 samples each were generated. Automated RNA extraction, followed by RT-PCR, was performed in a 96-well plate. Positive pools were identified, and the individual samples were reanalyzed. Of the 94 pools/wells, four were positive [Ct values: N (22.7 to 28.3), ORF1ab (23.3 to 27.2), and internal control (34.4 to 35.4)]. The 40 samples comprising the four pools were identified and reanalyzed individually; six samples were positive, with Ct values of N gene, ORF1ab, and internal control comparable to their respective wells. Additional experiments were performed on samples with high Ct values, and overall results showed 91.6% positive and 100% negative agreement compared with individual testing approach. Thus, 940 samples were tested in 148 reactions compared with 940 reactions in routine screening. The sample pooling strategy may help catch up with testing needs and minimal turnaround times and facilitate enormous savings on laboratory supplies, extraction, and PCR kits currently in short supply

    Land-use harmonization datasets for annual global carbon budgets

    Get PDF
    This is the final version. Available on open access from Copernicus Publications via the DOI in this recordCode availability; The source code used to produce the core LUH2 datasets and the LUH2-GCB datasets, along with the sources and citations of necessary inputs, are archived at https://doi.org/10.5281/zenodo.3954113 (Chini et al., 2020a).Data availability: The data produced in this study are archived and publicly available at the NASA Oak Ridge National Laboratory Distributed Active Archive Center: https://doi.org/10.3334/ORNLDAAC/1851 (Chini et al, 2020b).Land-use change has been the dominant source of anthropogenic carbon emissions for most of the historical period and is currently one of the largest and most uncertain components of the global carbon cycle. Advancing the scientific understanding on this topic requires that the best data be used as input to state-of-The-Art models in well-organized scientific assessments. The Land-Use Harmonization 2 dataset (LUH2), previously developed and used as input for simulations of the 6th Coupled Model Intercomparison Project (CMIP6), has been updated annually to provide required input to land models in the annual Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2-GCB updates and extensions which incorporate annual wood harvest data updates from the Food and Agriculture Organization (FAO) of the United Nations for dataset years after 2015 and the History Database of the Global Environment (HYDE) gridded cropland and grazing area data updates (based on annual FAO cropland and grazing area data updates) for dataset years after 2012, along with extrapolations to the current year due to a lag of 1 or more years in the FAO data releases. The resulting updated LUH2-GCB datasets have provided global, annual gridded land-use and land-use-change data relating to agricultural expansion, deforestation, wood harvesting, shifting cultivation, regrowth and afforestation, crop rotations, and pasture management and are used by both bookkeeping models and dynamic global vegetation models (DGVMs) for the GCB. For GCB 2019, a more significant update to LUH2 was produced, LUH2-GCB2019 (10.3334/ORNLDAAC/1851, Chini et al., 2020b), to take advantage of new data inputs that corrected cropland and grazing areas in the globally important region of Brazil as far back as 1950. From 1951 to 2012 the LUH2-GCB2019 dataset begins to diverge from the version of LUH2 used for the World Climate Research Programme's CMIP6, with peak differences in Brazil in the year 2000 for grazing land (difference of 100g000gkm2) and in the year 2009 for cropland (difference of 77g000gkm2), along with significant sub-national reorganization of agricultural land-use patterns within Brazil. The LUH2-GCB2019 dataset provides the base for future LUH2-GCB updates, including the recent LUH2-GCB2020 dataset, and presents a starting point for operationalizing the creation of these datasets to reduce time lags due to the multiple input dataset and model latencies.NASAUS Department of Energy, Office of Science, Office of Biological and Environmental ResearchEuropean Union Horizon 202

    Septal aperture of the humerus: Aetiology and frequency rates in two European populations.

    Get PDF
    Analysis of the septal aperture was conducted on two documented European populations. Collections from the National Museum of Natural History Lisbon, Portugal and University of Athens, Greece were used for the study. Both collections are modern and documented for sex and age. The Portuguese sample comprises 297 individuals (149 males and 148 females) between the ages of 18 and 88. A septal aperture was observed in 50 individuals resulting in a frequency of 16.83%. The Greek sample comprises 117 individuals (68 males and 49 females) between the ages of 20 and 65. Twenty-five septal apertures were observed, giving a frequency of 21.37%. Both populations had high frequencies which exceeded those observed in European countries in previous studies. Sex analysis shows that both samples confirm that septal apertures are more common in females. The Portuguese sample also supports that septal apertures are more common in the left humerus, however the Greek sample had a higher frequency of bilateral cases. Measurements of the Portuguese sample were taken to determine whether robusticity correlates with presence of septal apertures. These measurements concluded that there was no difference in robusticity with presence or absence of a septal aperture, challenging previous studies
    corecore