385 research outputs found

    Domains in Melts of Comb-Coil Diblock Copolymers: Superstrong Segregation Regime

    Get PDF
    Conditions for the crossover from the strong to the superstrong segregation regime are analyzed for the case of comb-coil diblock copolymers. It is shown that the critical interaction energy between the components required to induce the crossover to the superstrong segregation regime is inversely proportional to mb = 1 + n/m, where n is the degree of polymerization of the side chain and m is the distance between successive grafting points. As a result, the superstrong segregation regime, being rather rare in the case of ordinary block copolymers, has a much better chance to be realized in the case of diblock copolymers with combs grafted to one of the blocks.

    Self-Assembly of Supramolecular Triblock Copolymer Complexes

    Get PDF
    Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≀0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.

    Self-Assembly of Supramolecules Consisting of Octyl Gallate Hydrogen Bonded to Polyisoprene-block-poly(vinylpyridine) Diblock Copolymers

    Get PDF
    Synchrotron radiation was used to investigate the self-assembly in two comb-shaped supramolecules systems consisting of octyl gallate (OG), i.e., 1-octyl-3,4,5-trihydroxybenzoate, hydrogen bonded to the pyridine groups of polyisoprene-block-poly(vinylpyridine) diblock copolymers. In the case of the 1,2-polyisoprene-block-poly(4-vinylpyridine)(OG)x system, self-assembly was only observed for x ≄0.5, where x denotes the number of OG molecules per pyridine group. For x = 0.5, 0.75, 1.0, and 1.2 the system self-assembled in the form of hexagonally ordered cylinders of P4VP(OG) throughout the entire temperature range of 25-200 °C investigated. For the 1,4-polyisoprene-block-poly(2-vinylpyridine)(OG)x system, on the other hand, a considerably more complex phase behavior was found, including the formation of cubic, hexagonally ordered cylinders and lamellar morphologies. In this case several order-order transitions were observed as a function of temperature, including a lamellar to lamellar transition involving a collapse of the layer thickness. The absence of hydrogen bonding between the octyl gallate molecules and the pyridine groups at elevated temperatures is argued to be a key factor for many of the phenomena observed.

    Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules

    Get PDF
    In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The alignment diagram, presenting the macroscopic alignment in T/TODT vs ω/ωc, contains three regions of parallel alignment separated by a region of perpendicular alignment. For our material, the order-disorder temperature TODT = 67 °C and ωc, the frequency above which the distortion of the chain conformation dominates the materials’ viscoelasticity, is around 0.1 Hz at 61 °C. For the first time flipping from a pure transverse alignment via biaxial transverse/perpendicular alignment to a perpendicular alignment as a function of the strain amplitude was found.

    Using digital soil maps to infer edaphic affinities of plant species in Amazonia: Problems and prospects

    Get PDF
    Amazonia combines semi-continental size with difficult access, so both current ranges of species and their ability to cope with environmental change have to be inferred from sparse field data. Although efficient techniques for modeling species distributions on the basis of a small number of species occurrences exist, their success depends on the availability of relevant environmental data layers. Soil data are important in this context, because soil properties have been found to determine plant occurrence patterns in Amazonian lowlands at all spatial scales. Here we evaluate the potential for this purpose of three digital soil maps that are freely available online: SOTERLAC, HWSD, and SoilGrids. We first tested how well they reflect local soil cation concentration as documented with 1,500 widely distributed soil samples. We found that measured soil cation concentration differed by up to two orders of magnitude between sites mapped into the same soil class. The best map-based predictor of local soil cation concentration was obtained with a regression model combining soil classes from HWSD with cation exchange capacity (CEC) from SoilGrids. Next, we evaluated to what degree the known edaphic affinities of thirteen plant species (as documented with field data from 1,200 of the soil sample sites) can be inferred from the soil maps. The species segregated clearly along the soil cation concentration gradient in the field, but only partially along the model-estimated cation concentration gradient, and hardly at all along the mapped CEC gradient. The main problems reducing the predictive ability of the soil maps were insufficient spatial resolution and/or georeferencing errors combined with thematic inaccuracy and absence of the most relevant edaphic variables. Addressing these problems would provide better models of the edaphic environment for ecological studies in Amazonia

    Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and Manifestations.

    Full text link
    The coronavirus disease 2019 (COVID-19) pandemic is an issue of global significance that has taken the lives of many across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for its pathogenesis. The pulmonary manifestations of COVID-19 have been well described in the literature. Initially, it was thought to be limited to the respiratory system; however, we now recognize that COVID-19 also affects several other organs, including the nervous system. Two similar human coronaviruses (CoV) that cause severe acute respiratory syndrome (SARS-CoV-1) and Middle East respiratory syndrome (MERS-CoV) are also known to cause disease in the nervous system. The neurological manifestations of SARS-CoV-2 infection are growing rapidly, as evidenced by several reports. There are several mechanisms responsible for such manifestations in the nervous system. For instance, post-infectious immune-mediated processes, direct virus infection of the central nervous system (CNS), and virus-induced hyperinflammatory and hypercoagulable states are commonly involved. Guillain-Barré syndrome (GBS) and its variants, dysfunction of taste and smell, and muscle injury are numerous examples of COVID-19 PNS (peripheral nervous system) disease. Likewise, hemorrhagic and ischemic stroke, encephalitis, meningitis, encephalopathy acute disseminated encephalomyelitis, endothelialitis, and venous sinus thrombosis are some instances of COVID-19 CNS disease. Due to multifactorial and complicated pathogenic mechanisms, COVID-19 poses a large-scale threat to the whole nervous system. A complete understanding of SARS-CoV-2 neurological impairments is still lacking, but our knowledge base is rapidly expanding. Therefore, we anticipate that this comprehensive review will provide valuable insights and facilitate the work of neuroscientists in unfolding different neurological dimensions of COVID-19 and other CoV associated abnormalities

    Self-assembly in solution of a reversible comb-shaped supramolecular polymer

    Get PDF
    We report a single step synthesis of a polyisobutene with a bis-urea moiety in the middle of the chain. In low polarity solvents, this polymer self-assembles by hydrogen bonding to form a combshaped polymer with a central hydrogen bonded backbone and polyisobutene arms. The comb backbone can be reversibly broken, and consequently, its length can be tuned by changing the solvent, the concentration or the temperature. Moreover, we have proved that the bulkiness of the side-chains have a strong influence on both the self-assembly pattern and the length of the backbone. Finally, the density of arms can be reduced, by simply mixing with a low molar mass bis-urea
    • 

    corecore