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Service Façade:
Dynamic Decoupling in Service Invocation
DIONYSIS ATHANASOPOULOS, Victoria University of Wellington

Service-oriented software, built using concrete services, tends to change with difficulty, as analogously happens in the object-

oriented software when it uses concretions. Towards achieving dynamic decoupling, adapter- and abstraction-based approaches

have been proposed, which aim at developing a single service-client for alternative services, i.e. services that offer the same or
similar functionality, usually through syntactically similar interfaces. However, the aforementioned approaches do not propose

fully dynamic-decoupling solutions, i.e. service invocations are not adapted in a completely seamless and dynamic way. Tech-

nically, the existing approaches realize the invocation of alternative services by using delegation, which implements complex
service-translation scripts, (re-)configured at compile time. To go beyond the state-of-the-art, we propose the Service Façade

pattern that leverages the case of syntactically similar interfaces, offering a unified service interface, based on which service
invocations are seamlessly bound and adapted at runtime (late binding and dynamic adaptation, respectively). Technically, our

pattern replaces delegation with service polymorphism, without needing the development of service-translation scripts. More-

over, the pattern structure, along with its client, are closed to modifications when new alternative services are incorporated.

CCS Concepts: •Software and its engineering→ Software design engineering;
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1. INTRODUCTION

Famous vendors (e.g. Google, Amazon) provide access to their resources via adopting the Service-oriented
Architecture (SoA) style [Erl 2005]. Service interface consists of a set of public operation signatures1.
SoA software, built using concrete services, tends to change with difficulty (rigid software), as analo-
gously happens in the object-oriented software when it uses concretions.

State-of-the-art. To decouple SoA software from concrete services (achieving the service loose cou-
pling principle [Erl 2009]), various approaches have been proposed in the literature that range from
static, realized at compile time (static binding), to dynamic, where a single client is used at runtime.
In dynamic decoupling, client should be seamlessly (without code re-configuration and modifications)
adapted at runtime to use alternative services. Alternative are the services that offer the same or simi-
lar functionality, usually through syntactically similar interfaces. Dynamic-decoupling approaches can
be divided into two categories: adapter-based (e.g. [Ponnekanti and Fox 2004; M. Davydov 2005; Caval-
laro and Nitto 2008; Athanasopoulos et al. 2009; Kongdenfha et al. 2014]) and abstraction-based (e.g.

1Without loss of generality, we assume that service interface and client are specified in the Java language.
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[Ruokolainen and Kutvonen 2006; Taher et al. 2006; Athanasopoulos et al. 2011; Liu and Liu 2012])
approaches. In the first category, client is developed with respect to a concrete service and maps it
to alternative services, translating their invocations [Kongdenfha et al. 2014]. The task of developing
service-translation scripts is very time-consuming and development-demanding, since service inter-
faces are usually very complex and large. For instance, Amazon Web service EC22 provides 78 opera-
tions, whose documentation is 812 pages. In the second category, client is developed with respect to an
abstract service. Since abstract services are not available, existing approaches (manually or automati-
cally) define abstract services that represent alternative services. In both categories, service mappings
are identified, towards defining subtyping relations. Since alternative services are autonomously devel-
oped by different providers (without extending common or standardised interfaces), syntactically simi-
lar service interfaces do not necessarily have subtyping relations. To overcome this problem, a relaxed
subtyping version is defined by existing adapter- (e.g. [Athanasopoulos et al. 2009]) and abstraction-
based approaches (e.g. [Andrikopoulos and Plebani 2011; Athanasopoulos et al. 2011]). Technically,
due to the relaxed subtyping, the existing approaches adopt delegation, instead of polymorphism, for
forwarding service invocations, implementing complex translation scripts.

Limitations of the state-of-the-art. The approaches of both categories do not offer fully dynamic-
decoupling solutions, i.e. service invocations are not adapted in a completely seamless and dynamic
way. In particular, when service adapter (resp. service abstraction) is used, client is tightly coupled
to a concrete service (resp. an abstract service), without having access to the unmapped operations of
alternative services. Moreover, due to the relaxed subtyping, unmapped fields possibly exist in the data-
types of the alternative services. Consequently, missing data-type values (i.e. data-types that cannot be
instantiated by the client at compile-time) make possibly infeasible the runtime adaptation. The final
limitation is that service adapter and abstraction are not closed to modifications in incorporating new
alternative services, violating the Open-Closed Principle (OCP) [Martin 2002]. Specifically, translation
scripts are modified, incorporating delegation to the operations of a new service.

Contribution. To overcome the limitations of the state-of-the-art, we are inspired by the classical
façade pattern [Gamma et al. 1994] and its service version [Erl 2009; Demange et al. 2013]. The gen-
eral idea of the classical façade is to offer a unified API for a set of software components. Its service
version states that service façade should sit between a service and its client’s contract, eliminating the
tight coupling between them. However, the existing service façade provides only the general idea of the
pattern, without specifying its structure and the way that a unified interface is built in the case of syn-
tactically similar interfaces. To bridge this gap, we specify the structure and the technical description of
Service Façade that leverages the case of alternative services, offering a fully dynamic-decoupling solu-
tion and conforming to OCP. We also contribute on describing the structures and limitations of service-
adapter and -abstraction patterns, since their approaches have focused on describing their techniques
for identifying service mappings, without modelling the underlying patterns.

Our contribution is summarized and structured as follows. Section 2 defines the related pattern
structures and limitations. Section 3 defines the proposed pattern. Section 4 describes the core imple-
mentation details of our pattern. Section 5 presents an illustrative example for adopting our pattern.
Finally, Section 6 summarizes our approach and discusses its future research directions.

2. RELATED PATTERNS

We describe the service adapter and abstraction patterns in Sections 2.1 and 2.2, respectively.

2aws.amazon.com/documentation/ec2
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Fig. 1. The UML class diagram of the pattern structure of Service Adapter.

2.1 Service Adapter

We detail the structure and limitations of Service Adapter in Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Structure of the Service-Adapter pattern. Based on its structure (Fig. 1), client is developed
with respect to the ServiceAdapter class, whose operations are the same to one of the alternative
services (e.g. ConcreteService1). Each operation of ServiceAdapter maps and translates operation
invocations (e.g. the invocation of operation1 of ConcreteService1 to the invocation of operation2 of
ConcreteService2). The translation script is constructed based on the service mappings (ServiceAdapter
field). Moreover, client selects at compile time the currently used service via providing value for the
field ConcreteServiceID. If an alternative service is needed to substitute the previously selected ser-
vice, client re-selects another service and is re-configured to use it.

2.1.2 Limitations of the Service-Adapter pattern. We divide the limitations into two groups, those
related to the client-side and those related to the pattern-side.

– The limitations, related to the client-side, are the following:
A. Tight coupling: client is essentially developed with respect to a concrete service;

a. limited access: it can access only the operations of a concrete service (e.g. unmappedOperation
of ConcreteService2 is not accessible);

b. coarse access: it is (re-)configured to use alternative services at compile time.
– The limitations, related to the pattern-side, are the following:

B. Delegation: SoA developer writes complex service-translation scripts;
– problematic delegation: since there are not necessarily mappings between all the data-type

fields, translation script may miss values for unmapped fields (e.g. in DataType2), which are
hidden from client.

C. Semi-dynamic decoupling: to avoid translation failure, client possibly intervenes at runtime
to provide values for unmapped data-type fields.

D. OCP violation: SoA developer incorporates a new alternative service via modifying the code of
each operation of ServiceAdapter, i.e. translation scripts from each operation of ConcreteService1
to the mapped operations of the new alternative service.

2.2 Service Abstraction

The notion of abstract service is analogous, but not exactly the same, with that in the object-oriented
domain. In particular, as proposed in [Athanasopoulos et al. 2011], an abstract service is defined based
on the following relaxed version of the behavioural subtyping [Liskov and Wing 1994]:

– the operations of abstract service represent the common/similar operations of alternative services;
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Fig. 2. The UML class diagram of the pattern structure of Service Abstraction3.

– the input (resp. output) data-types of abstract service represent the common/similar fields of input
(resp. output) data-types of alternative services;

– the fields of an input (resp. output) data-type of abstract service should be more and more generic
(resp. less and less specific) from that of alternative services.

This relaxed relation is captured by the mappings between the abstract and alternative services. Since
the input/output data-types of service operations are usually complex tree-structured XML schemas4,
existing approaches (e.g. [Athanasopoulos et al. 2011]) consider only the leaf elements of the tree struc-
tures, since leaves are related to the data needed in the service-translation process (see the illustrative
example in Section 5).

Sections 2.2.1 and 2.2.2 detail the structure and limitations of Service Abstraction, respectively.

2.2.1 Structure of the Service-Abstraction pattern. Based on its structure (Fig. 2), client is devel-
oped with respect to the AbstractService class, whose mappedOperations represent common/similar
operations of alternative services. The implementation of mappedOperation delegates operation invo-
cations, guided by the mappings (see the ServiceInterfaceMappings and DataTypeMappings fields of
AbstractService and MappedFieldsFactory, respectively). Since mappedOperation uses delegation (in-
stead of polymorphism), AbstractService is modelled as an abstract class. MappedFieldsFactory rep-
resents the common/similar fields of alternative data-types. It further provides factory methods (e.g.
makeObject1) in order to instantiate a data-type (e.g. DataType1), which are used by AbstractService.
Moreover, client selects at compile time the currently used service via providing value for the field
ConcreteServiceID. If an alternative service is needed to substitute the previously selected service,
client re-selects another service and is re-configured to use it.

2.2.2 Limitations of the Service-Abstraction pattern. We divide the limitations into two groups,
those related to the client-side and those related to the pattern-side.

– The limitations, related to the client-side, are the following:
– Restricted loose coupling: client is developed with respect to an abstract service;

a. limited access: it can access only mapped operations (e.g. it cannot access unmappedOperation1
of ConcreteService1);

b. coarse access: it is (re-)configured to use alternative services at compile time.
– The limitations, related to the pattern-side, are the same with those of Service Adapter.

3We depict in this figure only one concrete service and one data-type of its operations in order to keep it simple.
4www.w3.org/TR/xmlschema-2

www.w3.org/TR/xmlschema-2


Service Façade • 5

3. THE PROPOSED SERVICE FAÇADE PATTERN

We describe the synopsis, context, problem, forces, solution, and consequences of our pattern.

3.1 Synopsis

SoA software is developed with respect to a unified interface of alternative services (all of their opera-
tions are accessible), offered by our Service Façade pattern. It is defined in such a way that client is fully
loose-coupled from the alternative services. SoA developer does not write complex service-translation
scripts, since service polymorphism is used. Finally, SoA developer incorporates new alternative ser-
vices, without modifications on both client and pattern sides.

3.2 Context

Services are autonomously developed by different providers, without extending common or standard-
ised interfaces. Thus, SoA software, built by using concrete services, tends to change with difficulty,
since alternative services do not necessarily have identical interfaces. To decouple SoA software from
concrete services, it should be seamlessly and dynamically adapted to use alternative services, without
any re-configuration at compile time.

3.3 Problem

Offering fully dynamic-decoupling solution is challenging, since the interfaces of alternative services
are usually syntactically similar, but not identical. The related patterns of service adapter and abstrac-
tion do not offer fully dynamic-decoupling solutions.

3.4 Forces

We divide the forces in two groups, those related to the client-side and those related to the pattern-side.

– The forces, related to the client-side, are the following:
1. client wants to access all of the operations of alternative services, without being tight coupled

to concrete services.
– The forces, related to the pattern-side, are the following:

2. SoA developer wants to avoid developing complex service-translation scripts;
a. having at his disposal beforehand all of the data-type values, required for invoking services.

3. he wants to be all service invocations bound and adapted at runtime.
4. he wants to incorporate new alternative services, without client and pattern modifications.

3.5 Solution

The pattern structure of the proposed Service Façade is depicted in Fig. 3.

3.5.1 Pattern structure. To allow the achievement of the Forces, our pattern enhances the structure
of façade, defining three abstraction layers: façade, abstract-service, and concrete-service layers (clear
separation of concerns).

Façade layer. Given that the general purpose of façade is to unify software components, promot-
ing the client decoupling, it is the proper pattern for achieving Force 1. However, façade does not
define how the unified interface is built in the case of syntactically similar interfaces. To leverage this
case, our pattern defines the following ServiceInterfaceFacade and MappedFieldsFacade classes, one
for service operations and one for input/output data-types. ServiceInterfaceFacade provides two cate-
gories of operations: (i) those that represent the similar/common operations of alternative services (e.g.
mappedOperation); (ii) those that correspond to the unmapped operations (e.g. unmappedOperation1 of
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Fig. 3. The UML class diagram of the pattern structure of Service Façade3.

ConcreteService1). In a similar way, two categories of fields are provided in MappedFieldsFacade: (i)
those that represent similar/common data-type fields (e.g. MappedFields); (ii) those that correspond to
the unmapped fields (e.g. UnmappedFields1 of DataType1Factory).
MappedFieldsFacade provides one unified constructor, whose first argument corresponds to the sim-

ilar/common data-type fields, and the remaining arguments correspond to the unmapped data-type
fields offered from each alternative service. In this way, client configures the Service Façade to use
either one service (providing values for the first field and values for one of the unmapped data-type
fields) or a combination of alternative services (e.g. triple of arguments etc.). The other design deci-
sion of offering a different constructor for each combination of alternative services is not traceable (i.e.
very high number of constructors). Since client provides beforehand all the data-type values, required
for invoking alternative services, the unified constructor achieves Force 2.a. Notably, client provides
data-type values, without selecting services, achieving the other part of Force 1. Finally, based on the
provided (combination of) values, the binding to the proper service is performed at runtime (identifying
dynamically to which services the provided data-type values belong), achieving Force 3.
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Abstract-service layer. To avoid the development of complex service-translation scripts, delega-
tion is replaced by service polymorphism, achieving Force 2. In particular, an abstract service is (man-
ually or automatically) defined, whose interface (see ServiceInterface in Fig. 3) provides the com-
mon/similar operations of alternative services (e.g. mappedOperation of ServiceInterface). To realize
service polymorphism, subclassing, between the interfaces of the abstract and the alternative services,
is defined. In particular, for each alternative service (e.g. ConcreteService1), an adapter that extends
ServiceInterface is defined, which further forwards the invocations to the alternative service (e.g.
ServiceInterface1Adapter). An adapter uses the factory class of a data-type (e.g. DataType1Factory)
in order to take an instance of the data-type (using its makeObject operation). DataType1Factory ex-
tends the abstract class, MappedDataTypeFields, which includes the common/similar data-type fields.
Concluding, providing the necessary input data-type fields (e.g. MappedFields, UnmappedFields1, and
UnmappedFields2), the late binding and dynamic adaptation are automatically performed, based on the
aforementioned structure of the service polymorphism.

Concrete-service layer. In the third abstraction layer, our pattern defines wrappers for each con-
crete service and for each input/output data-type.

3.5.2 Incorporating new alternative services. To incorporate a new alternative service, only exten-
sions and additions are required, achieving Force 4. In particular, the required steps are the following:

1. add in MappedFieldsFacade the UnmappedFields of the new service;
2. extend the constructor of MappedFieldsFacade with a new argument;
3. add so many unmappedOperations in ServiceInterfaceFacade as many the unmapped operations of

the new service are;
4. add a new DataTypeFactory that extends MappedDataTypeFields;
5. add a new ServiceInterfaceAdapter that extends ServiceInterface;
6. add ConcreteService and DataType wrappers for the new service.

3.6 Consequences

3.6.1 Benefits

– The benefits, related to the client-side, are the following:
A. Fully loose coupling: client is essentially developed with the interface of an abstract service;

a. unified interface: client accesses all of the operations of alternative services;
b. seamless access: client is bound to alternative services at runtime;

– the layers of abstract and concrete services are hidden to client.
– The benefits, related to the pattern-side, are the following:

B. Service polymorphism: SoA developer does not develop complex service-translation scripts;
– realization: he defines subclassing between abstract and concrete services.

C. Dynamic decoupling: all alternative services are encapsulated;
a. late binding: service invocations are bound at runtime;
b. dynamic adaptation: invocations are adapted at runtime, without code modifications.

D. OCP conformance: client and pattern are closed to modifications when new alternative ser-
vices are incorporated.

3.6.2 Liabilities

– The liabilities, related to the client-side, are the following:
A. Provision of extra values: client provides values not only for the currently invoked service,

but also for its substitute services that may not necessarily be needed.
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– The liabilities, related to the pattern-side, are the following:
B. Service mappings: the façade and abstract-service layers depend on the identified mappings;

– a new alternative service should have similar operations with the existing one.
C. Unified constructor of the data-type façade: if a high number of alternative services exists,

then the arguments number of the unified constructor is also high;
– it can be split into smaller constructors, based on the similarity of the alternative services.

Fig. 4. The code snippet of an indicative Java implementation of a mapped operation between alternative services.

4. CORE IMPLEMENTATION DETAILS

The source code of the Java implementation of our pattern is online available at this location5. In this
Section, we describe the core implementation details of the façade abstraction-layer of our pattern.

Concerning the implementation of MappedFieldsFacade, its unified constructor implements the fol-
lowing constraint checks6. Client should provide values for the MappedFields and for at least one of the
UnmappedFields arguments. UnmappedFields1 corresponds to the input data-type of the currently used
service, UnmappedFields2 to the first substitute service, and so on. The order of the unmapped fields are
aligned based on their subtyping relations (e.g. ConcreteService2 can substitute ConcreteService1,
ConcreteService3 can substitute ConcreteService1 and ConcreteService2, and so on). Moreover, the
constructor measures the number of the implicitly selected substitute services, based on the provided
values for unmapped data-type fields.

Regarding the implementation of ServiceInterfaceFacade, mappedOperation uses the operation
getCurrentDataTypeFactory of MappedFieldsFacade for retrieving an instance (based on the user-
provided values) of the input data-type of the currently used service (Fig. 4 (line 4)). If there is a

5https://ecs.victoria.ac.nz/foswiki/pub/Main/DionysisAthanasopoulos/ServiceFacade.zip
6Due to the algorithmic simplicity of the constructor implementation, we do not provide its implementation code.

https://ecs.victoria.ac.nz/foswiki/pub/Main/DionysisAthanasopoulos/ServiceFacade.zip


Service Façade • 9

runtime need to substitute the currently used service (e.g. failure exception), MappedOperation uses
getSubstituteDataTypeFactory of MappedFieldsFacade for retrieving an instance of the input data-
type of a substitute service (Fig. 4 (lines 10-20)). MappedOperation catches the failure exception (Fig.
4 (line 8)) and dynamically invokes the substitute service (Fig. 4 (line 14)). Finally, mappedOperation
creates an instance of MappedFieldsFacade for wrapping the output data-type of the invoked operation
(Fig. 4 (line 7)), which will be returned to the client.

Fig. 5. The hierarchical representation of two example service interfaces, along with the mappings of their data-types.

5. EXAMPLE – INSTANTIATING THE PROPOSED SERVICE FAÇADE AND CONFIGURING ITS CLIENT

As an example, we take two services, whose overall functionality is to enrol pre-graduate students in a
university department and to store information about their studies (e.g. course grades, etc.). We depict
in Fig. 5, the hierarchical representation of their mapped addStudiesInfo operations7. The figure also
depicts the mappings between the data-type fields of the operations, along with their decomposition in
mapped and unmapped fields.

The code snippet of an indicative Java implementation of client for our example is provided in
Fig. 6. Client configures the Service Façade to use PreGraduateStudentEnrolment1 via providing val-
ues for the mapped fields, id, grade, and advisor (Fig. 6 (lines 3-6)). Since the input data-type of
PreGraduateStudentEnrolment1 does not include unmapped fields, client provides an empty instance
of the corresponding data-type factory, instead of null value8 (Fig. 6 (line 9)). Moreover, client pro-
vides values for the unmapped field members of PreGraduateStudentEnrolment2, configuring the Ser-
vice Façade to use PreGraduateStudentEnrolment2 for potential substitution (Fig. 6 (lines 7-8)). The
source code of the whole example is also online available at this location5.

6. CONCLUSIONS AND FUTURE WORK

We proposed the Service Façade pattern that leveraged the case of alternative services, offering a fully
dynamic-decoupling solution and conforming to OCP. In this way, we overcome the limitations of the

7The interfaces are represented in a high-level way, i.e. without the technical details of the WSDL and XML languages.
8We assume that null argument value means that the corresponding service will not be used by the pattern.



10 • D. Athanasopoulos

Fig. 6. The code snippet of an indicative Java implementation of client for the illustrative example.

related service-adapter and -abstraction patterns. We also provided the core implementation details of
our pattern and an illustrative example of showing how our pattern is practically used.

Our future research direction is to extend our pattern in order to cover the decomposition of the
whole tree structure (instead of its leaves) of the data-types of services. On top of this, we aim at devel-
oping a tool, incorporated in an Integrated Development Environment (e.g. Eclipse9 plugin), supporting
the automated generation of the pattern structure for a set of alternative services.
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