12 research outputs found

    GLUTII

    No full text

    GLUT2

    No full text

    Interferon γ–Induced Human Guanylate Binding Protein 1 Inhibits Mammary Tumor Growth in Mice

    No full text
    Interferon γ (IFN-γ) has recently been implicated in cancer immunosurveillance. Among the most abundant proteins induced by IFN-γ are guanylate binding proteins (GBPs), which belong to the superfamily of large GTPases and are widely expressed in various species. Here, we investigated whether the well-known human GBP-1 (hGBP-1), which has been shown to exert antiangiogenic activities and was described as a prognostic marker in colorectal carcinomas, may contribute to an IFN-γ–mediated tumor defense. To this end, an IFN-independent, inducible hGBP-1 expression system was established in murine mammary carcinoma (TS/A) cells, which were then transplanted into syngeneic immune-competent Balb/c mice. Animals carrying TS/A cells that had been given doxycycline for induction of hGBP-1 expression revealed a significantly reduced tumor growth compared with mock-treated mice. Immunohistochemical analysis of the respective tumors demonstrated a tightly regulated, high-level expression of hGBP-1. No signs of an enhanced immunosurveillance were observed by investigating the number of infiltrating B and T cells. However, hemoglobin levels as well as the number of proliferating tumor cells were shown to be significantly reduced in hGBP-1–expressing tumors. This finding corresponded to reduced amounts of vascular endothelial growth factor A (VEGF-A) released by hGBP-1–expressing TS/A cells in vitro and reduced VEGF-A protein levels in the corresponding mammary tumors in vivo. The results suggest that hGBP-1 may contribute to IFN-γ–mediated antitumorigenic activities by inhibiting paracrine effects of tumor cells on angiogenesis. Consequently, owing to these activities GBPs might be considered as potent members in an innate, IFN-γ–induced antitumoral defense system
    corecore