312 research outputs found

    Hole and Electron Contributions to the Transport Properties of Ba(Fe_(1-x)Ru_x)_2As_2 Single Crystals

    Full text link
    We report a systematic study of structural and transport properties in single crystals of Ba(Fe_(1-x)Ru_x)_2As_2 for x ranging from 0 to 0.5. The isovalent substitution of Fe by Ru leads to an increase of the a parameter and a decrease of the c parameter, resulting in a strong increase of the AsFeAs angle and a decrease of the As height above the Fe planes. Upon Ru substitution, the magnetic order is progressively suppressed and superconductivity emerges for x > 0.15, with an optimal Tc ~ 20K at x = 0.35 and coexistence of magnetism and superconductivity between these two Ru contents. Moreover, the Hall coefficient RH which is always negative and decreases with temperature in BaFe2As2, is found to increase here with decreasing T and even change sign for x > 0.15. For x_Ru = 0.35, photo-emission studies have shown that the number of holes and electrons are similar with n_e = n_h ~ 0.11, that is twice larger than found in BaFe2As2 [1]. Using this estimate, we find that the transport properties of Ba(Fe_0.65Ru_0.35)_2As_2 can be accounted for by the conventional multiband description for a compensated semi-metal. In particular, our results show that the mobility of holes is strongly enhanced upon Ru addition and overcomes that of electrons at low temperature when x_Ru > 0.15.Comment: new version with minor correction

    Absence of large nanoscale electronic inhomogeneities in the Ba(Fe1-xCox)2As2 pnictide

    Full text link
    75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal for x=6% for various field H values and orientations. The sharpness of the superconducting and magnetic transitions demonstrates a homogeneity of the Co doping x better than +-0.25%. On the nanometer scale, the paramagnetic part of the NMR spectra is found very anisotropic and very narrow for H//ab which allows to rule out the interpretation of Ref.[6] in terms of strong Co induced electronic inhomogeneities. We propose that a distribution of hyperfine couplings and chemical shifts due to the Co effect on its nearest As explains the observed linewidths and relaxations. All these measurements show that Co substitution induces a very homogeneous electronic doping in BaFe2As2, from nano to micrometer lengthscales, on the contrary to the K doping.Comment: 6 pages, 4 figure

    Analysis of longitudinal bunching inan FEL driven two-beam accelerator

    Get PDF
    Recent experiments [1] have explored the use of a free-electron laser (FEL) as a buncher for a microwave two-beam accelerator, and the subsequent driving of a standing-wave rf output cavity. Here we present a deeper analysis of the longitudinal dynamics of the electron bunches as they are transported from the end of the FEL and through the output cavity. In particular, we examine the effect of the transport region and cavity aperture to filter the bunched portion of the beam. [1] T. Lefevre, et. al., Phys. Rev. Lett. 84 (2000), 1188.Comment: 3 pages, 8 figures. Submitted to XX Int'l LINAC Conferenc

    Role of pair-breaking and phase fluctuations in c-axis tunneling in underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta}

    Full text link
    The Josephson Plasma Resonance is used to study the c-axis supercurrent in the superconducting state of underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} with varying degrees of controlled point-like disorder, introduced by high-energy electron irradiation. As disorder is increased, the Josephson Plasma frequency decreases proportionally to the critical temperature. The temperature dependence of the plasma frequency does not depend on the irradiation dose, and is in quantitative agreement with a model for quantum fluctuations of the superconducting phase in the CuO2_{2} layers.Comment: 2 pages, submitted to the Proceedings of M2S-HTSC VIII Dresde

    Disorder and transport in cuprates: weak localization and magnetic contributions

    Get PDF
    We report resistivity measurements in underdoped YBa2_{2}Cu3_{3}O6.6_{6.6} and overdoped Tl2_{2}Ba2_{2}CuO6+x_{6+x} single crystals in which the concentration of defects in the CuO2_{2} planes is controlled by electron irradiation. Low TT upturns of the resistivity are observed in both cases for large defect content. In the Tl compound the decrease of conductivity scales as expected from weak localization theory. On the contrary in YBa2_{2}Cu3_{3}O6.6_{6.6} the much larger low T contribution to the resistivity is proportional to the defect content and might then be associated to a Kondo like spin flip scattering term. This would be consistent with the results on the magnetic properties induced by spinless defects.Comment: latex rullier1.tex, 5 files, 4 pages [SPEC-S01/003], submitted to Phys. Rev. Let

    Irradiation-induced confinement in a quasi-one-dimensional metal

    Full text link
    The anisotropic resistivity of PrBa2_2Cu4_4O8_8 has been measured as a function of electron irradiation fluence. Localization effects are observed for extremely small amounts of disorder corresponding to electron mean-free-paths of order 100 unit cells. Estimates of the localization corrections suggest that this anomalous localization threshold heralds a crossover to a ground state with pronounced one-dimensional character in which conduction electrons become confined to a small cluster of chains.Comment: 4 pages, 4 figure

    Glitz

    Get PDF
    The crystal structure of the orthorhombic and tetragonal phases of La(Ba 2-xLax)Cu3-yO 6+x/2-y+ z are determined on twinned crystals. The orthorhombic structure, obtained for low x, is close to the regular Y-Ba-Cu-O type (twin a * b * c-b * a * c), but is highly copper deficient on the Cu(1) site (~ 30 %). The local correlations (ξ ~ 20 Å) between copper atoms and vacancies, as deduced from X-ray diffuse scattering, correspond to a short-range segregation of vacancies in chains. As a consequence of the large amount of defects, these crystals are non-typical semiconductors. The tetragonal structure, x ≃ 0.50, leads to tri-twinned crystals with 90° faulting, a * a * 3 a-a * 3 a * a -3 a * a * a (a, the perovskite lattice constant). In these materials the copper sites are found to be strongly anharmonic. This is due to the disorder introduced by the La-Ba substitution. These crystals are also semiconductors with a T-1/4 activation law for the conductivity which indicates that variable range hopping is expected to set in, a consequence of localization by the disorder

    Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2

    Full text link
    We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport measurements and Angle Resolved photoemission spectroscopy. We observe that Fe and Ru orbitals hybridize to form a coherent electronic structure and that Ru does not induce doping. The number of holes and electrons, deduced from the area of the Fermi Surface pockets, are both about twice larger than in BaFe2As2. The contribution of both carriers to the transport is evidenced by a change of sign of the Hall coefficient with decreasing temperature. Fermi velocities increase significantly with respect to BaFe2As2, suggesting a significant reduction of correlation effects. This may be a key to understand the appearance of superconductivity at the expense of magnetism in undoped iron pnictides

    Effect of controlled disorder on quasiparticle thermal transport in Bi2_2Sr2_2CaCu2_2O8_8

    Full text link
    Low temperature thermal conductivity, κ\kappa, of optimally-doped Bi2212 was studied before and after the introduction of point defects by electron irradiation. The amplitude of the linear component of κ\kappa remains unchanged, confirming the universal nature of heat transport by zero-energy quasiparticles. The induced decrease in the absolute value of κ\kappa at finite temperatures allows us to resolve a nonuniversal term in κ\kappa due to conduction by finite-energy quasiparticles. The magnitude of this term provides an estimate of the quasiparticle lifetime at subkelvin temperatures.Comment: 5 pages including 2 .eps figuer

    Mn local moments prevent superconductivity in iron-pnictides Ba(Fe 1-x Mn x)2As2

    Full text link
    75As nuclear magnetic resonance (NMR) experiments were performed on Ba(Fe1-xMnx)2As2 (xMn = 2.5%, 5% and 12%) single crystals. The Fe layer magnetic susceptibility far from Mn atoms is probed by the75As NMR line shift and is found similar to that of BaFe2As2, implying that Mn does not induce charge doping. A satellite line associated with the Mn nearest neighbours (n.n.) of 75As displays a Curie-Weiss shift which demonstrates that Mn carries a local magnetic moment. This is confirmed by the main line broadening typical of a RKKY-like Mn-induced staggered spin polarization. The Mn moment is due to the localization of the additional Mn hole. These findings explain why Mn does not induce superconductivity in the pnictides contrary to other dopants such as Co, Ni, Ru or K.Comment: 6 pages, 7 figure
    • …
    corecore