16 research outputs found
Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1
The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease
Mouse granzyme K has pro-inflammatory potential
Granzymes (gzms) are key components of T-killer (Tc) cells believed to mediate pro-apoptotic activities. Recent evidence suggests that gzms also possess non-cytotoxic activities that contribute to host defense. In this study, we show that Tc cells from lymphocytic choriomeningitis virus (LCMV)-infected wild-type (wt) and gzm A/B-deficient mice express similar levels of gzmK protein, with both mouse strains efficiently controlling infection. GzmK, in recombinant form or secreted by ex vivo-derived LCMV-immune gzmAxBâ/â Tc cells, lacks pro-apoptotic activity. Instead, gzmK induces primary mouse macrophages to process and secrete interleukin-1ÎČ, independent of the ATP receptor P2X7. Together with the finding that IL-1Ra (Anakinra) treatment inhibits virus elimination but not generation of cytotoxic Tc cells in wt mice, the data suggest that Tc cells control LCMV through non-cytotoxic processes that involve gzmK
SNPs Altering Ammonium Transport Activity of Human Rhesus Factors Characterized by a Yeast-Based Functional Assay.
Proteins of the conserved Mep-Amt-Rh family, including mammalian Rhesus factors, mediate transmembrane ammonium transport. Ammonium is an important nitrogen source for the biosynthesis of amino acids but is also a metabolic waste product. Its disposal in urine plays a critical role in the regulation of the acid/base homeostasis, especially with an acid diet, a trait of Western countries. Ammonium accumulation above a certain concentration is however pathologic, the cytotoxicity causing fatal cerebral paralysis in acute cases. Alteration in ammonium transport via human Rh proteins could have clinical outcomes. We used a yeast-based expression assay to characterize human Rh variants resulting from non synonymous single nucleotide polymorphisms (nsSNPs) with known or unknown clinical phenotypes and assessed their ammonium transport efficiency, protein level, localization and potential trans-dominant impact. The HsRhAG variants (I61R, F65S) associated to overhydrated hereditary stomatocytosis (OHSt), a disease affecting erythrocytes, proved affected in intrinsic bidirectional ammonium transport. Moreover, this study reveals that the R202C variant of HsRhCG, the orthologue of mouse MmRhcg required for optimal urinary ammonium excretion and blood pH control, shows an impaired inherent ammonium transport activity. Urinary ammonium excretion was RHcg gene-dose dependent in mouse, highlighting MmRhcg as a limiting factor. HsRhCG(R202C) may confer susceptibility to disorders leading to metabolic acidosis for instance. Finally, the analogous R211C mutation in the yeast ScMep2 homologue also impaired intrinsic activity consistent with a conserved functional role of the preserved arginine residue. The yeast expression assay used here constitutes an inexpensive, fast and easy tool to screen nsSNPs reported by high throughput sequencing or individual cases for functional alterations in Rh factors revealing potential causal variants.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe