1,062 research outputs found
Polymorphisms in the bradykinin B2 receptor gene and childhood asthma
Bradykinin has been suggested as one of the key mediators of bronchial asthma. Polymorphisms with a potential functional relevance have been described in the B2 bradykinin receptor gene. Study of these polymorphisms in 77 children with asthma and 73 controls revealed no association. However, when comparing the asthmatics according to their age at onset (before and after age 4), the exon 1 allele BE1-2G was significantly associated with late-onset asthma (p <0.05). Since BE1-2G has previously been shown to lead to a higher transcription rate of the B2 receptor, this result warrants further investigation of the role of bradykinin in conferring susceptibility to pediatric asthma
High-momentum tails from low-momentum effective theories
In a recent work \cite{Anderson:2010aq}, Anderson \emph{et al.} used the
renormalization group (RG) evolution of the momentum distribution to show that,
under appropriate conditions, operator expectation values exhibit factorization
in the two-nucleon system. Factorization is useful because it provides a clean
separation of long- and short-distance physics, and suggests a possible
interpretation of the universal high-momentum dependence and scaling behavior
found in nuclear momentum distributions. In the present work, we use simple
decoupling and scale-separation arguments to extend the results of Ref.
\cite{Anderson:2010aq} to arbitrary low-energy -body states. Using methods
that are reminiscent of the operator product expansion (OPE) in quantum field
theory, we find that the high-momentum tails of momentum distributions and
static structure factors factorize into the product of a universal function of
momentum that is fixed by two-body physics, and a state-dependent matrix
element that is the same for both and is sensitive only to low-momentum
structure of the many-body state. As a check, we apply our factorization
relations to two well-studied systems, the unitary Fermi gas and the electron
gas, and reproduce known expressions for the high-momentum tails of each.Comment: 22 pages, 0 figure
Renormalization Flow of Axion Electrodynamics
We study the renormalization flow of axion electrodynamics, concentrating on
the non-perturbative running of the axion-photon coupling and the mass of the
axion (like) particle. Due to a non-renormalization property of the
axion-photon vertex, the renormalization flow is controlled by photon and axion
anomalous dimensions. As a consequence, momentum-independent axion
self-interactions are not induced by photon fluctuations. The non-perturbative
flow towards the ultraviolet exhibits a Landau-pole-type behavior, implying
that the system has a scale of maximum UV extension and that the renormalized
axion-photon coupling in the deep infrared is bounded from above. Even though
gauge invariance guarantees that photon fluctuations do not decouple in the
infrared, the renormalized couplings remain finite even in the deep infrared
and even for massless axions. Within our truncation, we also observe the
existence of an exceptional RG trajectory, which is extendable to arbitrarily
high scales, without being governed by a UV fixed point.Comment: 12 pages, 4 figure
BAT (Berry Analysis Tool): A high-throughput image interpretation tool to acquire the number, diameter, and volume of grapevine berries
QTL-analysis (quantitative trait loci) and marker development rely on efficient phenotyping techniques. Objectivity and precision of a phenotypic data evaluation is crucial but time consuming. In the present study a high-throughput image interpretation tool was developed to acquire automatically number, size, and volume of grape berries from RGB (red-green-blue) images. Individual berries of one cluster were placed on a black construction (300 x 300 mm) to take a RGB image from the top. The image interpretation of one dataset with an arbitrary number of images runs automatically using the BAT (Berry-Analysis-Tool) developed in MATLAB. For validation of results, the number of berries was counted and their size was measured using a digital calliper. A measuring cylinder was used to determine reliably the berry volume by displacement of water. All placed berries could be counted by BAT 100 % correctly. Manual ratings compared with BAT ratings showed strong correlation of r = 0.96 for mean berry diameter/image and r = 0.98 for cluster volume.
In-situ nitriding of Fe<sub>2</sub>VAl during laser surface remelting to manipulate microstructure and crystalline defects
Tailoring the physical properties of complex materials for targeted applications requires optimizing the microstructure and crystalline defects that influence electrical and thermal transport and mechanical properties. Laser surface remelting can be used to modify the subsurface microstructure of bulk materials and hence manipulate their properties locally. Here, we introduce an approach to perform remelting in a reactive nitrogen atmosphere to form nitrides and induce segregation of nitrogen to structural defects. These defects arise from the fast solidification of the full-Heusler Fe2VAl compound that is a promising thermoelectric material. Advanced scanning electron microscopy, including electron channeling contrast imaging and three-dimensional electron backscatter diffraction, is complemented by atom probe tomography to study the distribution of crystalline defects and their local chemical composition. We reveal a high density of dislocations, which are stable due to their character as geometrically necessary dislocations. At these dislocations and low-angle grain boundaries, we observe segregation of nitrogen and vanadium, which can be enhanced by repeated remelting in nitrogen atmosphere. We propose that this approach can be generalized to other additive manufacturing processes to promote local segregation and precipitation states, thereby manipulating physical properties
Consumption of Mannan-binding Lectin During Abdominal Aortic Aneurysm Repair
AbstractObjectivePatients undergoing abdominal aortic aneurysm (AAA) repair are exposed to an ischaemia-reperfusion injury (IRI), which is in part mediated by complement activation. We investigated the role of the novel lectin pathway of complement during IRI in patients undergoing AAA repair.MethodsPatients undergoing elective open infrarenal AAA repair had systemic blood samples taken at induction of anaesthesia, prior to aortic clamping, prior to aortic declamping and at reperfusion. Control patients undergoing major abdominal surgery were also included. Plasma was assayed for levels of mannan-binding lectin (MBL) using ELISA techniques. Consumption of plasma MBL was used as a measure of lectin pathway activation.ResultsTwenty-three patients undergoing AAA repair and eight control patients were recruited. No lectin pathway activation could be demonstrated in the control patients. AAA patients experienced a mean decrease in plasma MBL levels of 41% representing significant lectin pathway activation (p=0.003).ConclusionConsumption of MBL occurs during AAA repair, suggesting an important role for the lectin pathway in IRI. Specific transient inhibition of lectin pathway activity could be of significant therapeutic value in patients undergoing open surgical AAA repair
Guanosine nucleotides regulate B2 kinin receptor affinity of agonists but not of antagonists: Discussion of a model proposing receptor precoupling to G protein
The effect of nucleotides on binding of the B2 kinin (BK) receptor agonist {[}H-3]BK and the antagonist {[}H-3]NPC17731 to particulate fractions of human foreskin fibroblasts was studied. At 0 degrees C, particulate fractions exhibited a single class of binding sites with a Kd of 2.3 nM for {[}H-3]BK and a K-d Of 3.8 nM for the antagonist {[}H-3]NPC17731. Incubation with radioligands at 37 degrees C for 5 min gave a reduction of agonist, as well as antagonist, binding that was between 0-40% depending on the preparation, even in the absence of guanosine nucleotides. As shown by Scatchard analysis, this reduction in specific binding was due to a shift in the affinity of at least a fraction of the receptors. The presence at 37 degrees C of the guanine nucleotides GTP, GDP and their poorly hydrolyzable analogs left {[}H-3]-NPC17731 binding unaffected, but reduced the receptor affinity for {[}H-3]BK to a K-d Of about 15 nM. The maximal number of receptors, however, was unchanged. This affinity change was strongly dependent on the presence of bivalent cations, in particular Mg2+. It was reversed by incubation at 0 degrees C, The rank order of the guanosine nucleotides for {[}H-3]BK binding reduction was GTP{[}gamma S] = Gpp{[}NH]p > GTP = GDP > GDP{[}beta S]. GMP, ATP, ADP and AMP showed no influence on agonist binding. A model for the interaction of the B2 kinin receptor with G proteins is discussed
Recommended from our members
Targeted deletions of complement lectin pathway genes improve outcome in traumatic brain injury, with MASP-2 playing a major role.
The lectin pathway (LP) of complement activation is believed to contribute to brain inflammation. The study aims to identify the key components of the LP contributing to TBI outcome as possible novel pharmacological targets. We compared the long-term neurological deficits and neuropathology of wild-type mice (WT) to that of mice carrying gene deletions of key LP components after experimental TBI. WT or MASP-2 (Masp2-/-), ficolin-A (Fcna-/-), CL-11 (Colec11-/-), MASP-1/3 (Masp1-/-), MBL-C (Mbl2-/-), MBL-A (Mbl1-/-) or MBL-/- (Mbl1-/-/Mbl2-/-) deficient male C57BL/6J mice were used. Mice underwent sham surgery or TBI by controlled cortical impact. The sensorimotor response was evaluated by neuroscore and beam walk tests weekly for 4Â weeks. To obtain a comparative analysis of the functional outcome each transgenic line was rated according to a health score calculated on sensorimotor performance. For selected genotypes, brains were harvested 6Â weeks after injury for histopathological analysis. MASP-2-/-, MBL-/- and FCN-A-/- mice had better outcome scores compared to WT. Of these, MASP-2-/- mice had the best recovery after TBI, showing reduced sensorimotor deficits (by 33% at 3Â weeks and by 36% at 4Â weeks). They also showed higher neuronal density in the lesioned cortex with a 31.5% increase compared to WT. Measurement of LP functional activity in plasma from MASP-2-/- mice revealed the absence of LP functional activity using a C4b deposition assay. The LP critically contributes to the post-traumatic inflammatory pathology following TBI with the highest degree of protection achieved through the absence of the LP key enzyme MASP-2, underlining a therapeutic utility of MASP-2 targeting in TBI
Metabolomics Unravel Contrasting Effects of Biodiversity on the Performance of Individual Plant Species
In spite of evidence for positive diversity-productivity relationships increasing plant diversity has highly variable effects on the performance of individual plant species, but the mechanisms behind these differential responses are far from being understood. To gain deeper insights into the physiological responses of individual plant species to increasing plant diversity we performed systematic untargeted metabolite profiling on a number of herbs derived from a grassland biodiversity experiment (Jena Experiment). The Jena Experiment comprises plots of varying species number (1, 2, 4, 8, 16 and 60) and number and composition of functional groups (1 to 4; grasses, legumes, tall herbs, small herbs). In this study the metabolomes of two tall-growing herbs (legume: Medicago x varia; non-legume: Knautia arvensis) and three small-growing herbs (legume: Lotus corniculatus; non-legumes: Bellis perennis, Leontodon autumnalis) in plant communities of increasing diversity were analyzed. For metabolite profiling we combined gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and UPLC coupled to FT-ICR-MS (LC-FT-MS) analyses from the same sample. This resulted in several thousands of detected m/z-features. ANOVA and multivariate statistical analysis revealed 139 significantly changed metabolites (30 by GC-TOF-MS and 109 by LC-FT-MS). The small-statured plants L. autumnalis, B. perennis and L. corniculatus showed metabolic response signatures to increasing plant diversity and species richness in contrast to tall-statured plants. Key-metabolites indicated C- and N-limitation for the non-leguminous small-statured species B. perennis and L. autumnalis, while the metabolic signature of the small-statured legume L. corniculatus indicated facilitation by other legumes. Thus, metabolomic analysis provided evidence for negative effects of resource competition on the investigated small-statured herbs that might mechanistically explain their decreasing performance with increasing plant diversity. In contrast, taller species often becoming dominant in mixed plant communities did not show modified metabolite profiles in response to altered resource availability with increasing plant diversity. Taken together, our study demonstrates that metabolite profiling is a strong diagnostic tool to assess individual metabolic phenotypes in response to plant diversity and ecophysiological adjustment
- …