24 research outputs found

    Water desalination by air-gap membrane distillation using meltblown polypropylene nanofiber membrane

    Get PDF
    This paper presents a study of air gap membrane distillation (AGMD) using meltblown polypropylene (PP) nanofiber membrane to produce fresh water via desalination process. PP nanofiber membranes with the effective area 0.17 m2 are tested with NaCl solutions (0.5 – 4.0 wt.%) and seawater as the feed solutions (9400 – 64800 µS/cm) in a tubular membrane module. Results show that the flux decreases with increasing the membrane thickness from 547 to 784 µm. The flux increases with the feed flow rate and temperature difference across the membrane. The feed concentration affects the flux insignificantly. The AGMD system can reject the salts at least 96%. Water vapor permeation rate is relatively higher than solute permeation rate resulting in the conductivity value of permeate decreases when the corresponding flux increases. The AGMD system produces the fresh water (200 – 1520 µS/cm) that is suitable for drinking, fisheries or irrigation

    Ammonia-Nitrogen Recovery from Synthetic Solution using Agricultural Waste Fibers

    Get PDF
    In this study, modification of Empty Fruit Bunch (EFB) fibers as a means to recover ammonianitrogen from a synthetic solution was investigated. Methods: The EFB fiber was modified using sodium hydroxide.Adsorption-desorption studies of ammonia nitrogen into the modified EFB fiber were investigated Findings: Theincrease in adsorption capacity was found to be proportional with the increase of pH up to 7, temperature and ammoniaconcentration. The maximum adsorption capacity is 0.53-10.89 mg/g. The attachment of ammonia nitrogen involves ionexchange-chemisorption. The maximum desorption capacity of 0.0999 mg/g. Applications: This study can be used as abaseline for designing a low cost adsorbent system for ammonia nitrogen recovery drainage and industrial wastewater aswell as EFBs-palm oil mill effluent composting

    Cultural Characteristics of Recombinant Escherichia coli Cells Carrying a Novel Antioxidant Gene

    No full text
    Oxidative stress was studied in terms of reactive oxygen species (ROS) in superoxide dismutase deficient E. coli IM303 (I4) carrying pYGE and pUC 19 vector in a bioreactor to investigate cultural characteristics of the cells. The maximum specific growth rate was found for both cultures and the parameters were evaluated with Gompertz equation. The yield of pYGE was 1.5 times higher than that of the cells carrying pUC 19, indicating that the cell carrying pYGE can grow effectively under an oxidative stress condition. It was also found that the DO values were varied with pUC19 than pYGE and the ROS content of pUC19 was found to be higher than pYGE

    The application of technological intervention for stroke rehabilitation in Southeast Asia: a scoping review with stakeholders' consultation

    No full text
    Background: The technological intervention is considered as an adjunct to the conventional therapies applied in the rehabilitation session. In most high-income countries, technology has been widely used in assisting stroke survivors to undergo their treatments. However, technology use is still lacking in Southeast Asia, especially in middle- and low-income countries. This scoping review identifies and summarizes the technologies and related gaps available in Southeast Asia pertaining to stroke rehabilitation. Methods: The JBI manual for evidence synthesis was used to conduct a scoping study. Until September 2021, an electronic search was performed using four databases (Medline, CINAHL, Scopus, ASEAN Citation Index). Only the studies that were carried out in Southeast Asia were chosen. Results: Forty-one articles were chosen in the final review from 6,873 articles found during the initial search. Most of the studies reported the implementation of technological intervention combined with conventional therapies in stroke rehabilitation. Advanced and simple technologies were found such as robotics, virtual reality, telerehabilitation, motion capture, assistive devices, and mobility training from Singapore, Thailand, Malaysia, and Indonesia. The majority of the studies show that technological interventions can enhance the recovery period of stroke survivors. The consultation session suggested that the technological interventions should facilitate the needs of the survivors, caregivers, and practitioners during the rehabilitation. Conclusions: The integration of technology into conventional therapies has shown a positive outcome and show significant improvement during stroke recovery. Future studies are recommended to investigate the potential of home-based technological intervention and lower extremities

    Harmful algal blooms mitigation using clay/soil/sand modified with xanthan and calcium hydroxide

    No full text
    A method was studied for marine harmful algal blooms (HABs) mitigation using clay, soil, or sand modified with xanthan and calcium hydroxide. Results showed that xanthan could trap and wrap Amphidinium carterae cells via bridging and netting interactions due to its superior salt compatibility in seawater. The maximum cell removal efficiency was 55% when xanthan was used alone. The removal effect of xanthan was enhanced by the addition of appropriate calcium hydroxide that decreased the repulsive interaction between anionic xanthan and negatively charged algal cells. Three kinds of minerals (clays, soils, and sands) were ineffective in removing algal cells before treatment. When xanthan and calcium hydroxide were used together as modifiers, the removal efficiency increased to 83-89% within 30 min using 300 mg L-1 clays, soils, or sands modified with 20 mg L-1 xanthan and 100 mg L-1 calcium hydroxide. After several hours, 95-98% cell removal was achieved and there was no significant difference in the removal efficiencies among clays, soils, and sands after being modified with xanthan and calcium hydroxide. Thus, the method would provide an alternative modification approach to suppress and mitigate HABs using local soils/sands and polymers in marine systems
    corecore