15,809 research outputs found
Decoherence-protected memory for a single-photon qubit
The long-lived, efficient storage and retrieval of a qubit encoded on a
photon is an important ingredient for future quantum networks. Although systems
with intrinsically long coherence times have been demonstrated, the combination
with an efficient light-matter interface remains an outstanding challenge. In
fact, the coherence times of memories for photonic qubits are currently limited
to a few milliseconds. Here we report on a qubit memory based on a single atom
coupled to a high-finesse optical resonator. By mapping and remapping the qubit
between a basis used for light-matter interfacing and a basis which is less
susceptible to decoherence, a coherence time exceeding 100 ms has been measured
with a time-independant storage-and-retrieval efficiency of 22%. This
demonstrates the first photonic qubit memory with a coherence time that exceeds
the lower bound needed for teleporting qubits in a global quantum internet.Comment: 3 pages, 4 figure
Indirect (source-free) integration method. II. Self-force consistent radial fall
We apply our method of indirect integration, described in Part I, at fourth
order, to the radial fall affected by the self-force. The Mode-Sum
regularisation is performed in the Regge-Wheeler gauge using the equivalence
with the harmonic gauge for this orbit. We consider also the motion subjected
to a self-consistent and iterative correction determined by the self-force
through osculating stretches of geodesics. The convergence of the results
confirms the validity of the integration method. This work complements and
justifies the analysis and the results appeared in Int. J. Geom. Meth. Mod.
Phys., 11, 1450090 (2014).Comment: To appear in Int. J. Geom. Meth. Mod. Phy
Doping-induced quantum cross-over in ErTiSnO
We present the results of the investigation of magnetic properties of the
ErTiSnO series. For small doping values the ordering
temperature decreases linearly with  while the moment configuration remains
the same as in the  parent compound. Around  doping level we
observe a change in the behavior, where the ordering temperature starts to
increase and new magnetic Bragg peaks appear. For the first time we present
evidence of a long-range order (LRO) in ErSnO () below
 mK. It is revealed that the moment configuration corresponds to a
Palmer-Chalker type with a value of the magnetic moment significantly
renormalized compared to . We discuss our results in the framework of a
possible quantum phase transition occurring close to .Comment: accepted in PRB Rapi
Toward extremely metal poor stars
Extremely metal poor stars have been the focus of much recent attention owing
to the expectation that their chemical abundances can shed light on the metal
and dust yields of the earliest supernovae. We present our most realistic
simulation to date of the astrophysical pathway to the first metal enriched
stars. We simulate the radiative and supernova hydrodynamic feedback of a
 Population III star starting from cosmological initial conditions
realizing Gaussian density fluctuations. We follow the gravitational
hydrodynamics of the supernova remnant at high spatial resolution through its
freely-expanding, adiabatic, and radiative phases, until gas, now
metal-enriched, has resumed runaway gravitational collapse. Our findings are
surprising: while the Population III progenitor exploded with a low energy of
 and injected an ample metal mass of , the
first cloud to collapse after the supernova explosion is a dense surviving
primordial cloud on which the supernova blastwave deposited metals only
superficially, in a thin, unresolved layer. The first metal-enriched stars can
form at a very low metallicity, of only , and can
inherit the parent cloud's highly elliptical, radially extended orbit in the
dark matter gravitational potential.Comment: 11 pages, 7 figures, accepted for publication in MNRAS Sept 1, 201
Remote Entanglement between a Single Atom and a Bose-Einstein Condensate
Entanglement between stationary systems at remote locations is a key resource
for quantum networks. We report on the experimental generation of remote
entanglement between a single atom inside an optical cavity and a Bose-Einstein
condensate (BEC). To produce this, a single photon is created in the
atom-cavity system, thereby generating atom-photon entanglement. The photon is
transported to the BEC and converted into a collective excitation in the BEC,
thus establishing matter-matter entanglement. After a variable delay, this
entanglement is converted into photon-photon entanglement. The matter-matter
entanglement lifetime of 100 s exceeds the photon duration by two orders
of magnitude. The total fidelity of all concatenated operations is 95%. This
hybrid system opens up promising perspectives in the field of quantum
information
- …
