15,809 research outputs found

    Decoherence-protected memory for a single-photon qubit

    Full text link
    The long-lived, efficient storage and retrieval of a qubit encoded on a photon is an important ingredient for future quantum networks. Although systems with intrinsically long coherence times have been demonstrated, the combination with an efficient light-matter interface remains an outstanding challenge. In fact, the coherence times of memories for photonic qubits are currently limited to a few milliseconds. Here we report on a qubit memory based on a single atom coupled to a high-finesse optical resonator. By mapping and remapping the qubit between a basis used for light-matter interfacing and a basis which is less susceptible to decoherence, a coherence time exceeding 100 ms has been measured with a time-independant storage-and-retrieval efficiency of 22%. This demonstrates the first photonic qubit memory with a coherence time that exceeds the lower bound needed for teleporting qubits in a global quantum internet.Comment: 3 pages, 4 figure

    Indirect (source-free) integration method. II. Self-force consistent radial fall

    Get PDF
    We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall affected by the self-force. The Mode-Sum regularisation is performed in the Regge-Wheeler gauge using the equivalence with the harmonic gauge for this orbit. We consider also the motion subjected to a self-consistent and iterative correction determined by the self-force through osculating stretches of geodesics. The convergence of the results confirms the validity of the integration method. This work complements and justifies the analysis and the results appeared in Int. J. Geom. Meth. Mod. Phys., 11, 1450090 (2014).Comment: To appear in Int. J. Geom. Meth. Mod. Phy

    Doping-induced quantum cross-over in Er2_2Ti2x_{2-x}Snx_xO7_7

    Full text link
    We present the results of the investigation of magnetic properties of the Er2_2Ti2x_{2-x}Snx_xO7_7 series. For small doping values the ordering temperature decreases linearly with xx while the moment configuration remains the same as in the x=0x = 0 parent compound. Around x=1.7x = 1.7 doping level we observe a change in the behavior, where the ordering temperature starts to increase and new magnetic Bragg peaks appear. For the first time we present evidence of a long-range order (LRO) in Er2_2Sn2_2O7_7 (x=2.0x = 2.0) below TN=130T_N = 130 mK. It is revealed that the moment configuration corresponds to a Palmer-Chalker type with a value of the magnetic moment significantly renormalized compared to x=0x = 0. We discuss our results in the framework of a possible quantum phase transition occurring close to x=1.7x = 1.7.Comment: accepted in PRB Rapi

    Influence of ionizing radiation on early human brain development

    Get PDF

    Toward abinitioab\,initio extremely metal poor stars

    Full text link
    Extremely metal poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60M60\,M_\odot Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely-expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051erg10^{51}\,\text{erg} and injected an ample metal mass of 6M6\,M_\odot, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blastwave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 25×104Z2-5\times10^{-4}\,Z_\odot, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.Comment: 11 pages, 7 figures, accepted for publication in MNRAS Sept 1, 201

    Remote Entanglement between a Single Atom and a Bose-Einstein Condensate

    Full text link
    Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μ\mus exceeds the photon duration by two orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information
    corecore