1,690 research outputs found
On the Radial Distribution of White Dwarfs in the Globular Cluster NGC 6397
We have examined the radial distribution of white dwarfs over a single
HST/ACS field in the nearby globular cluster NGC 6397. In relaxed populations,
such as in a globular cluster, stellar velocity dispersion, and hence radial
distribution, is directly dependent on stellar masses. The progenitors of very
young cluster white dwarfs had a mass of ~0.8 solar masses, while the white
dwarfs themselves have a mass of ~0.5 solar masses. We thus expect young white
dwarfs to have a concentrated radial distribution (like that of their
progenitors) that becomes more extended over several relaxation times to mimic
that of ~0.5 solar mass main-sequence stars. However, we observe young white
dwarfs to have a significantly extended radial distribution compared to both
the most massive main sequence stars in the cluster and also to old white
dwarfs.Comment: 13 pages including 1 table and 3 figures. Accepted for publication in
the MNRAS Letter
The Spectral Types of White Dwarfs in Messier 4
We present the spectra of 24 white dwarfs in the direction of the globular
cluster Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs.
Determining the spectral types of the stars in this sample, we find 24 type DA
and 0 type DB (i.e., atmospheres dominated by hydrogen and helium
respectively). Assuming the ratio of DA/DB observed in the field with effective
temperature between 15,000 - 25,000 K, i.e., 4.2:1, holds for the cluster
environment, the chance of finding no DBs in our sample due simply to
statistical fluctuations is only 6 X 10^(-3). The spectral types of the ~100
white dwarfs previously identified in open clusters indicate that DB formation
is strongly suppressed in that environment. Furthermore, all the ~10 white
dwarfs previously identified in other globular clusters are exclusively type
DA. In the context of these two facts, this finding suggests that DB formation
is suppressed in the cluster environment in general. Though no satisfactory
explanation for this phenomenon exists, we discuss several possibilities.Comment: Accepted for Publication in Astrophys. J. 11 pages including 4
figures and 2 tables (journal format
Atmospheric dispersion and the implications for phase calibration
The success of any ALMA phase-calibration strategy, which incorporates phase
transfer, depends on a good understanding of how the atmospheric path delay
changes with frequency (e.g. Holdaway & Pardo 2001). We explore how the wet
dispersive path delay varies for realistic atmospheric conditions at the ALMA
site using the ATM transmission code. We find the wet dispersive path delay
becomes a significant fraction (>5 per cent) of the non-dispersive delay for
the high-frequency ALMA bands (>160 GHz, Bands 5 to 10). Additionally, the
variation in dispersive path delay across ALMA's 4-GHz contiguous bandwidth is
not significant except in Bands 9 and 10. The ratio of dispersive path delay to
total column of water vapour does not vary significantly for typical amounts of
water vapour, water vapour scale heights and ground pressures above Chajnantor.
However, the temperature profile and particularly the ground-level temperature
are more important. Given the likely constraints from ALMA's ancillary
calibration devices, the uncertainty on the dispersive-path scaling will be
around 2 per cent in the worst case and should contribute about 1 per cent
overall to the wet path fluctuations at the highest frequencies.Comment: 13 pages, 10 figures, ALMA Memo 59
The JCMT dense gas survey of the Perseus Molecular Cloud
We present the results of a large-scale survey of the very dense gas in the
Perseus molecular cloud using HCO+ and HCN (J = 4 - 3) transitions. We have
used this emission to trace the structure and kinematics of gas found in pre-
and protostellar cores, as well as in outflows. We compare the HCO+/HCN data,
highlighting regions where there is a marked discrepancy in the spectra of the
two emission lines. We use the HCO+ to identify positively protostellar
outflows and their driving sources, and present a statistical analysis of the
outflow properties that we derive from this tracer. We find that the relations
we calculate between the HCO+ outflow driving force and the Menv and Lbol of
the driving source are comparable to those obtained from similar outflow
analyses using 12CO, indicating that the two molecules give reliable estimates
of outflow properties. We also compare the HCO+ and the HCN in the outflows,
and find that the HCN traces only the most energetic outflows, the majority of
which are driven by young Class 0 sources. We analyse the abundances of HCN and
HCO+ in the particular case of the IRAS 2A outflows, and find that the HCN is
much more enhanced than the HCO+ in the outflow lobes. We suggest that this is
indicative of shock-enhancement of HCN along the length of the outflow; this
process is not so evident for HCO+, which is largely confined to the outflow
base.Comment: 25 pages, 14 figures, 9 table
The Masses of Population II White Dwarfs
Globular star clusters are among the first stellar populations to have formed
in the Milky Way, and thus only a small sliver of their initial spectrum of
stellar types are still burning hydrogen on the main-sequence today. Almost all
of the stars born with more mass than 0.8 M_sun have evolved to form the white
dwarf cooling sequence of these systems, and the distribution and properties of
these remnants uniquely holds clues related to the nature of the now evolved
progenitor stars. With ultra-deep HST imaging observations, rich white dwarf
populations of four nearby Milky Way globular clusters have recently been
uncovered, and are found to extend an impressive 5 - 8 magnitudes in the
faint-blue region of the H-R diagram. In this paper, we characterize the
properties of these population II remnants by presenting the first direct mass
measurements of individual white dwarfs near the tip of the cooling sequence in
the nearest of the Milky Way globulars, M4. Based on Gemini/GMOS and Keck/LRIS
multiobject spectroscopic observations, our results indicate that 0.8 M_sun
population II main-sequence stars evolving today form 0.53 +/- 0.01 M_sun white
dwarfs. We discuss the implications of this result as it relates to our
understanding of stellar structure and evolution of population II stars and for
the age of the Galactic halo, as measured with white dwarf cooling theory.Comment: Accepted for Publication in Astrophys. J. on Aug. 05th, 2009. 19
pages including 9 figures and 2 tables (journal format
A Cluster of Compact Radio Sources in NGC 2024 (Orion B)
We present deep 3.6 cm radio continuum observations of the H II region NGC
2024 in Orion B obtained using the Very Large Array in its A-configuration,
with angular resolution. We detect a total of 25 compact radio
sources in a region of . We discuss the nature of these sources
and its relation with the infrared and X-ray objects in the region. At least
two of the radio sources are obscured proplyds whose morphology can be used to
restrict the location of the main ionizing source of the region. This cluster
of radio sources is compared with others that have been found in regions of
recent star formation.Comment: 21 pages, 7 figure
Measurement of Antenna Surfaces from In- and Out-Of-Focus Beam Maps using Astronomical Sources
We present a technique for the accurate estimation of large-scale errors in
an antenna surface using astronomical sources and detectors. The technique
requires several out-of-focus images of a compact source and the
signal-to-noise ratio needs to be good but not unreasonably high. For a given
pattern of surface errors, the expected form of such images can be calculated
directly. We show that it is possible to solve the inverse problem of finding
the surface errors from the images in a stable manner using standard numerical
techniques. To do this we describe the surface error as a linear combination of
a suitable set of basis functions (we use Zernike polynomials). We present
simulations illustrating the technique and in particular we investigate the
effects of receiver noise and pointing errors. Measurements of the 15-m James
Clerk Maxwell telescope made using this technique are presented as an example.
The key result is that good measurements of errors on large spatial scales can
be obtained if the input images have a signal-to-noise ratio of order 100 or
more. The important advantage of this technique over transmitter-based
holography is that it allows measurements at arbitrary elevation angles, so
allowing one to characterise the large scale deformations in an antenna as a
function of elevation.Comment: 6 pages, 5 figures (accepted by Astronomy & Astrophysics
- …