169 research outputs found
Gene Expression and Distribution of Key Bone Turnover Markers in the Callus of Estrogen-Deficient, Vitamin D-Depleted Rats
An experimental rat model was used to test the hypothesis that in osteoporosis (OP) the molecular composition of the extracellular matrix in the fracture callus is disturbed. OP was induced at 10 weeks of age by ovariectomy and a vitamin D3-deficient diet, and sham-operated animals fed normal diet served as controls. Three months later a closed tibial fracture was made and stabilized with an intramedullary nail. After 3 and 6 weeks of healing, the animals were killed and the fracture calluses examined with global gene expression, in situ mRNA expression, and ultrastructural protein distribution of four bone turnover markers: osteopontin, bone sialoprotein, tartrate-resistant acid phosphatase, and cathepsin K. Global gene expression showed a relatively small number of differently regulated genes, mostly upregulated and at 3 weeks. The four chosen markers were not differently regulated, and only minor differences in the in situ mRNA expression and ultrastructural protein distribution were detected. Gene expression and composition of fracture calluses are not generally disturbed in experimental OP
The skeletal phenotype of chondroadherin deficient mice
Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their a2b1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the a1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth
Proteases in Plasma and Kidney of db/db Mice as Markers of Diabetes-Induced Nephropathy
Db/db mice are overweight, dyslipidemic and develop diabetic complications, relevant for similar complications in human type 2 diabetes. We have used db/db and db/+ control mice to investigate alterations in proteinase expression and activity in circulation and kidneys by SDS-PAGE zymography, electron microscopy, immunohistochemistry, Western blotting, and in situ zymography. Plasma from db/db mice contained larger amounts of serine proteinases compared to db/+ mice. Kidneys from the db/db mice had a significantly larger glomerular surface area and somewhat thicker glomerular basement membranes compared to the db/+ mice. Furthermore, kidney extracts from db/+ mice contained metalloproteinases with Mr of approximately 92000, compatible with MMP-9, not observed in db/db mice. These results indicate that higher levels of serine proteinases in plasma may serve as potential markers for kidney changes in db/db mice, whereas a decrease in MMP-9 in the kidney may be related to the glomerular changes
Brief Definitive Report The CCR7 Ligand ELC (CCL19) Is Transcytosed in High Endothelial Venules and Mediates T Cell Recruitment
Abstract Lymphocyte homing to secondary lymphoid tissue is defined by a multistep sequence of interactions between lymphocytes and endothelial cells in high endothelial venules (HEVs). After initial selectin-mediated tethering and rolling, firm adhesion of lymphocytes requires rapid upregulation of lymphocyte integrin adhesiveness. This step is mediated in part by the HEVderived chemokine SLC (secondary lymphoid-tissue chemokine, or CCL21) that binds to the CC chemokine receptor (CCR)7 on lymphocytes. However, the CC chemokine ELC (EpsteinBarr virus-induced molecule 1 ligand chemokine, or CCL19) shares the same receptor, and ELC transcripts have been observed in the T cell areas of lymphoid organs. Here, we show that perivascular ELC is transcytosed to the luminal surfaces of HEVs and enables efficient T cell homing to lymph nodes. In situ hybridization on sections of human tonsil showed no ELC mRNA in HEVs, but immunostaining revealed ELC protein in cytoplasmic vesicles of HEV cells. Furthermore, ELC injected into the footpads of mice entered the draining lymph nodes and was presented by HEVs. Finally, intracutaneous injections of ELC in mice lacking functionally relevant ELC and SLC ( plt/plt mice) restored T cell trafficking to draining lymph nodes as efficiently as SLC. We conclude that perivascular ELC is transcytosed to the luminal surfaces of HEVs and participates in CCR7-mediated triggering of lymphocyte arrest
Intraarticular location predicts cartilage filling and subchondral bone changes in a chondral defect: A randomized, blind, long-term follow-up trial involving 82 rabbit knees
Open Access - This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use,
distribution, and reproduction in any medium, provided the source is credited.Background and purpose: The natural history of, and predictive factors for outcome of cartilage restoration in chondral defects are poorly understood. We investigated the natural history of cartilage filling subchondral bone changes, comparing defects at two locations in the rabbit knee. Animals and methods: In New Zealand rabbits aged 22 weeks, a 4-mm pure chondral defect (ICRS grade 3b) was created in the patella of one knee and in the medial femoral condyle of the other. A stereo microscope was used to optimize the preparation of the defects. The animals were killed 12, 24, and 36 weeks after surgery. Defect filling and the density of subchondral mineralized tissue was estimated using Analysis Pro software on micrographed histological sections. Results: The mean filling of the patellar defects was more than twice that of the medial femoral condylar defects at 24 and 36 weeks of follow-up. There was a statistically significant increase in filling from 24 to 36 weeks after surgery at both locations. The density of subchondral mineralized tissue beneath the defects subsided with time in the patellas, in contrast to the density in the medial femoral condyles, which remained unchanged. Interpretation: The intraarticular location is a predictive factor for spontaneous filling and subchondral bone changes of chondral defects corresponding to ICRS grade 3b. Disregarding location, the spontaneous filling increased with long-term follow-up. This should be considered when evaluating aspects of cartilage restoration
Prognostic significance of osteopontin expression in early-stage non-small-cell lung cancer
Osteopontin (OPN) is a multifunctional protein, which has recently been shown to be linked to tumorigenesis, progression and metastasis in different malignancies. Since non-small-cell lung cancer (NSCLC)'s prognosis remains bad, with few predictors of outcome, the purpose of this study was to evaluate if OPN might be involved in NSCLC's biology and therefore represent a prognostic marker and a target for new therapeutic trials. Immunohistochemistry was used to detect OPN expression, evaluated as percentage of neoplastic cells with cytoplasmic immunoreactivity, in a wide cohort of patients with stage I NSCLC (136 cases). The median value of this series (20% of positive cells) was used as the cutoff value to distinguish tumours with low (<20%) from tumours with high (⩾20%) OPN expression. A statistically significant correlation between high levels of OPN and shorter overall (P=0.034) and disease-free (P=0.011) survival in our patients was shown. Our results support the hypothesis that high OPN expression is a significantly unfavourable prognostic factor for the survival of patients with stage I NSCLC. This conclusion has notable importance in terms of the biological characterization of early-stage tumours and therapeutic opportunities
Expression of Osteopontin in oesophageal squamous cell carcinoma
Osteopontin is a multifunctional 34 kDa extracellular matrix protein with a cell-binding domain. It is involved cell adhesion and cell migration and is therefore considered to influence tumorigenesis and/or metastasis. The purpose of the present study was to evaluate the clinical significance of Osteopontin expression in oesophageal squamous cell carcinoma (ESCC). In the present study, we immunohistochemically investigated the relationship between Osteopontin expression and clinicopathological factors including prognosis in surgical specimens of primary tumours in 175 patients with ESCC. Osteopontin was expressed in 48% of 175 patients. Osteopontin expression was significantly correlated with lymph node metastasis, lymphatic invasion, and stage (P=0.0015, 0.037 and 0.033, respectively). Tumours with expressing Osteopontin exhibited more lymph node metastasis, lymphatic invasion and advanced stage than the tumour with negative Osteopontin expression. Five-year survival rate was better in patients with negative Osteopontin expression than in those with positive Osteopontin expression (P=0.035). However, multivariate analysis revealed that Osteopontin expression was not an independent prognostic factor. As our findings suggest that Osteopontin may play an important role in progress of ESCC, the evaluation of Osteopontin expression is useful for predicting the malignant properties of ESCC
Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity
Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear
- …