2,078 research outputs found
High Performance Algorithms for Counting Collisions and Pairwise Interactions
The problem of counting collisions or interactions is common in areas as
computer graphics and scientific simulations. Since it is a major bottleneck in
applications of these areas, a lot of research has been carried out on such
subject, mainly focused on techniques that allow calculations to be performed
within pruned sets of objects. This paper focuses on how interaction
calculation (such as collisions) within these sets can be done more efficiently
than existing approaches. Two algorithms are proposed: a sequential algorithm
that has linear complexity at the cost of high memory usage; and a parallel
algorithm, mathematically proved to be correct, that manages to use GPU
resources more efficiently than existing approaches. The proposed and existing
algorithms were implemented, and experiments show a speedup of 21.7 for the
sequential algorithm (on small problem size), and 1.12 for the parallel
proposal (large problem size). By improving interaction calculation, this work
contributes to research areas that promote interconnection in the modern world,
such as computer graphics and robotics.Comment: Accepted in ICCS 2019 and published in Springer's LNCS series.
Supplementary content at https://mjsaldanha.com/articles/1-hpc-ssp
Dewetting of Glassy Polymer Films
Dynamics and morphology of hole growth in a film of power hardening
viscoplastic solid (yield stress ~ [strain-rate]^n) is investigated. At
short-times the growth is exponential and depends on the initial hole size. At
long-times, for n > 1/3, the growth is exponential with a different exponent.
However, for n < 1/3, the hole growth slows; the hole radius approaches an
asymptotic value as time tends to infinity. The rim shape is highly asymmetric,
the height of which has a power law dependence on the hole radius (exponent
close to unity for 0.25 < n < 0.4). The above results explain recent intriguing
experiments of Reiter, Phys. Rev. Lett, 87, 186101 (2001).Comment: 4 pages, 5 figures, RevTe
Large Deformation Effects in the N = Z 44Ti Compound Nucleus
The N = Z 44Ti* nucleus has been populated in Fusion Evaporation process at
very high excitation energies and angular momenta using two entrance channels
with different mass-asymmetry. The deformation effects in the rapidly rotating
nuclei have been investigated through the energy distribution of the
alpha-particle combined to statistical-model calculations. In the case of
low-multiplicity events, the ratio between first particle emitted has been
measured and shows significant disagreement with the predictions of the
statistical-model. This may explain The large discrepancies observed in proton
energy spectra measured in previous experiments performed in the same mass
region.Comment: Proceeding of the 10th International Conference on Nuclear Reaction
Mechanisms, Varenna Italy, June 9-13 2003. 10 pages, 6 figures, 1 tabl
Does Collocation Inform the Impact of Collaboration?
Background
It has been shown that large interdisciplinary teams working across geography are more likely to be impactful. We asked whether the physical proximity of collaborators remained a strong predictor of the scientific impact of their research as measured by citations of the resulting publications.
Methodology/Principal Findings
Articles published by Harvard investigators from 1993 to 2003 with at least two authors were identified in the domain of biomedical science. Each collaboration was geocoded to the precise three-dimensional location of its authors. Physical distances between any two coauthors were calculated and associated with corresponding citations. Relationship between distance of coauthors and citations for four author relationships (first-last, first-middle, last-middle, and middle-middle) were investigated at different spatial scales. At all sizes of collaborations (from two authors to dozens of authors), geographical proximity between first and last author is highly informative of impact at the microscale (i.e. within building) and beyond. The mean citation for first-last author relationship decreased as the distance between them increased in less than one km range as well as in the three categorized ranges (in the same building, same city, or different city). Such a trend was not seen in other three author relationships.
Conclusions/Significance
Despite the positive impact of emerging communication technologies on scientific research, our results provide striking evidence for the role of physical proximity as a predictor of the impact of collaborations.Ewing Marion Kauffman FoundationHarvard University. Office of the Provost (1992-
Large scale variation in DNA copy number in chicken breeds
Background Detecting genetic variation is a critical step in elucidating the molecular mechanisms underlying phenotypic diversity. Until recently, such detection has mostly focused on single nucleotide polymorphisms (SNPs) because of the ease in screening complete genomes. Another type of variant, copy number variation (CNV), is emerging as a significant contributor to phenotypic variation in many species. Here we describe a genome-wide CNV study using array comparative genomic hybridization (aCGH) in a wide variety of chicken breeds. Results We identified 3,154 CNVs, grouped into 1,556 CNV regions (CNVRs). Thirty percent of the CNVs were detected in at least 2 individuals. The average size of the CNVs detected was 46.3 kb with the largest CNV, located on GGAZ, being 4.3 Mb. Approximately 75% of the CNVs are copy number losses relatively to the Red Jungle Fowl reference genome. The genome coverage of CNVRs in this study is 60 Mb, which represents almost 5.4% of the chicken genome. In particular large gene families such as the keratin gene family and the MHC show extensive CNV. Conclusions A relative large group of the CNVs are line-specific, several of which were previously shown to be related to the causative mutation for a number of phenotypic variants. The chance that inter-specific CNVs fall into CNVRs detected in chicken is related to the evolutionary distance between the species. Our results provide a valuable resource for the study of genetic and phenotypic variation in this phenotypically diverse species
Evolution of shell structure in neutron-rich calcium isotopes
We employ interactions from chiral effective field theory and compute the
binding energies and low-lying excitations of calcium isotopes with the
coupled-cluster method. Effects of three-nucleon forces are included
phenomenologically as in-medium two-nucleon interactions, and the coupling to
the particle continuum is taken into account using a Berggren basis. The
computed ground-state energies and the low-lying 2+ states for the isotopes
42,48,50,52Ca are in good agreement with data, and we predict the excitation
energy of the first 2+ state in 54Ca at 1.9 MeV, displaying only a weak
sub-shell closure. In the odd-mass nuclei 53,55,61Ca we find that the positive
parity states deviate strongly from the naive shell model.Comment: 5 pages, 4 figures; small correction of effective 3NF and slight
change of the corresponding parameters; updated figures and tables; main
results and conclusions unchange
Dewetting of thin polymer films near the glass transition
Dewetting of ultra-thin polymer films near the glass transition exhibits
unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)].
We present here the first theoretical attempt to understand these features,
focusing on the shear-thinning behaviour of these films. We analyse the profile
of the dewetting film, and characterize the time evolution of the dry region
radius, , and of the rim height, . After a transient time
depending on the initial thickness, grows like while
increases like . Different regimes of growth are
expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review
Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88,
196101 (2002
Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration
An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the
existence of an excited superdeformed (SD) band in 190Hg and its very unusual
decay into the lowest SD band over 3-4 transitions. The energies and dipole
character of the transitions linking the two SD bands have been firmly
established. Comparisons with RPA calculations indicate that the excited SD
band can be interpreted as an octupole-vibrational structure.Comment: 12 pages, latex, 4 figures available via WWW at
http://www.phy.anl.gov/bgo/bc/hg190_nucl_ex.htm
Proceedings of the third French-Ukrainian workshop on the instrumentation developments for HEP
The reports collected in these proceedings have been presented in the third
French-Ukrainian workshop on the instrumentation developments for high-energy
physics held at LAL, Orsay on October 15-16. The workshop was conducted in the
scope of the IDEATE International Associated Laboratory (LIA). Joint
developments between French and Ukrainian laboratories and universities as well
as new proposals have been discussed. The main topics of the papers presented
in the Proceedings are developments for accelerator and beam monitoring,
detector developments, joint developments for large-scale high-energy and
astroparticle physics projects, medical applications.Comment: 3rd French-Ukrainian workshop on the instrumentation developments for
High Energy Physics, October 15-16, 2015, LAL, Orsay, France, 94 page
Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force
We discuss the ergodic properties of quasi-Markovian stochastic differential
equations, providing general conditions that ensure existence and uniqueness of
a smooth invariant distribution and exponential convergence of the evolution
operator in suitably weighted spaces, which implies the validity
of central limit theorem for the respective solution processes. The main new
result is an ergodicity condition for the generalized Langevin equation with
configuration-dependent noise and (non-)conservative force
- …
