1,482 research outputs found

    Research on a non-destructive fluidic storage control device

    Get PDF
    Fluidic memory device with associated fluidic alpha numerical displa

    Mass and UV-visible spectral fingerprints of dissolved organic matter: sources and reactivity

    Get PDF
    Advanced analytical techniques have revealed a high degree of complexity in the chemical makeup of dissolved organic matter (DOM). This has opened the door for a deeper understanding of the role of DOM in the aquatic environment. However, the expense, analytical cost, and challenges related to interpretation of the large datasets generated by these methods limit their widespread application. Optical methods, such as absorption and fluorescence spectroscopy are relatively inexpensive and easy to implement, but lack the detailed information available in more advanced methods. We were able to directly link the analysis of absorption spectra to the mass spectra of DOM using an in-line detector system coupled to multivariate data analysis. Monthly samples were taken from three river mouths in Sweden for one year. One subset of samples was exposed to photochemical degradation and another subset was exposed to long-term (4 months) biological degradation. A principle component analysis was performed on the coupled absorption-mass spectra data. Loading spectra for each principle component show distinct fingerprints for both reactivity (i.e. photochemical, biological degradation) and source (i.e. catchment land cover, temperature, hydrology). The fingerprints reveal mass-to-charge values that contribute to optical signals and characteristics seen in past studies, and emphasise the difficulties in interpreting changes in bulk CDOM characteristics resulting from multiple catchment processes. The approach provides a potential simple method for using optical indicators as tracers for more complex chemical processes both with regards to source material for DOM and the past reactive processing of DOM

    User Experience, IoMT, and Healthcare

    Get PDF
    In this paper, we discuss current trends in how health professionals and patients are using wearables, connected devices, and software tools to deliver care and health monitoring purposes. We emphasize the importance of considering users’ experience through understanding user workflows, their needs, and their limitations when creating connected health ecosystems (CHES). We discuss both the patient and the provider as “users” in the ecosystem. We note both barriers to using the Internet of medical things (IoMT) to create CHES and efforts to overcome them. The increasing penetration of the Internet and the availability of connected health devices along with changes in reimbursement policies provide an environment for CHES to grow

    Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    Get PDF
    To examine the potential influence of terrestrially derived DOM on the Baltic Sea, a year-long study of dissolved organic matter (DOM) was performed in three river catchments in Sweden. One catchment drains into the Bothnian Sea, while two southern catchments drain into the Baltic proper. Dissolved organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year. While the overall concentrations of DOC were several times higher in the southern two catchments, higher discharge in the northern catchment resulted in the annual loadings of DOC being on the same order of magnitude for all three catchments. Biological oxygen demand (BOD) was used as a proxy for the lability of carbon in the system. The range of BOD values was similar for all three catchments, however, the ratio of BOD to DOC (an indication of the labile fraction) in Ume river was four times higher than in the southern two catchments. Total annual BOD loading to the Baltic Sea was twice as high in the northern catchment than in the two southern catchments. Lower winter temperatures and preservation of organic matter in the northern catchment combined with an intense spring flood help to explain the higher concentrations of labile carbon in the northern catchment. Lower lability of DOM as well as higher colour in the southern catchments suggest that wetlands (i.e. peat bogs) may be the dominant source of DOM in these catchments, particularly in periods of low flow. With climate change expected to increase precipitation events and temperatures across the region, the supply and quality of DOM delivered to the Baltic Sea can also be expected to change. Our results indicate that DOM supply to the Baltic Sea from boreal rivers will be more stable throughout the year, and potentially have a lower bioavailability

    Haemodynamics Regulate Fibronectin Assembly via PECAM

    Get PDF
    Fibronectin (FN) assembly and fibrillogenesis are critically important in both development and the adult organism, but their importance in vascular functions is not fully understood. Here we identify a novel pathway by which haemodynamic forces regulate FN assembly and fibrillogenesis during vascular remodelling. Induction of disturbed shear stress in vivo and in vitro resulted in complex FN fibril assembly that was dependent on the mechanosensor PECAM. Loss of PECAM also inhibited the cell-intrinsic ability to remodel FN. Gain- and loss-of-function experiments revealed that PECAM-dependent RhoA activation is required for FN assembly. Furthermore, PECAM−/− mice exhibited reduced levels of active β1 integrin that were responsible for reduced RhoA activation and downstream FN assembly. These data identify a new pathway by which endothelial mechanotransduction regulates FN assembly and flow-mediated vascular remodelling

    A comparative study of two agamid lizards, Laudakia stellio and Pseudotrapelus sinaitus, in southern Sinai

    Get PDF
    The study compared habitat use and behaviour in two sympatric species of agamid lizard, Laudakia stellio and Pseudotrapelus sinaitus. Despite sharing the same habitat, the two species differed in their utilisation of microhabitats within it. Pseudotrapelus spent significantly longer on rocks compared to Laudakia. Pseudotrapelus showed evidence of heliothermic regulation, spending most of the time in the sun, but moving into the shade in the warmer afternoons. These varying temporal patterns may reflect differential thermoregulatory requirements between the two lizard species. Pseudotrapelus can change colour rapidly. There was no evidence of any thermoregulatory function in this ability; it is likely to be a form of social communication. Being brightly coloured was associated with behaviours implying increased conspicuousness: blue lizards were alert and vigilant for an average of 93% of each viewing session, compared to just 60% of the time in non-blue camouflaged lizards. The striking nature of the transitory blue colouration suggests it may have evolved for maximum salience, a trait common with signals. We simulated social encounters using blue model lizards and mirrors. Behavioural responses to these stimuli all involved colour changes, and support the social-signaling hypothesis

    The presence and potential impact of psychological safety in the healthcare setting: an evidence synthesis

    Get PDF
    Introduction: Psychological safety is the shared belief that the team is safe for interpersonal risk taking. Its presence improves innovation and error prevention. This evidence synthesis had 3 objectives: explore the current literature regarding psychological safety, identify methods used in its assessment and investigate for evidence of consequences of a psychologically safe environment. Methods: We searched multiple trial registries through December 2018. All studies addressing psychological safety within healthcare workers were included and reviewed for methodological limitations. A thematic analysis approach explored the presence of psychological safety. Content analysis was utilised to evaluate potential consequences. Results: We included 62 papers from 19 countries. The thematic analysis demonstrated high and low levels of psychological safety both at the individual level in study participants and across the studies themselves. There was heterogeneity in responses across all studies, limiting generalisable conclusions about the overall presence of psychological safety. A wide range of methods were used. Twenty-five used qualitative methodology, predominantly semi-structured interviews. Thirty quantitative or mixed method studies used surveys. Ten studies inferred that low psychological safety negatively impacted patient safety. Nine demonstrated a significant relationship between psychological safety and team outcomes. The thematic analysis allowed the development of concepts beyond the content of the original studies. This analytical process provided a wealth of information regarding facilitators and barriers to psychological safety and the development of a model demonstrating the influence of situational context. Discussion: This evidence synthesis highlights that whilst there is a positive and demonstrable presence of psychological safety within healthcare workers worldwide, there is room for improvement. The variability in methods used demonstrates scope to harmonise this. We draw attention to potential consequences of both high and low psychological safety. We provide novel information about the influence of situational context on an individual’s psychological safety and offer more detail about the facilitators and barriers to psychological safety than seen in previous reviews. There is a risk of participation bias - centres involved in safety research may be more aligned to these ideals. The data in this synthesis are useful for institutions looking to improve psychological safety by providing a framework from which modifiable factors can be identified

    A rapid and quantitative technique for assessing IgG monomeric purity, calibrated with the NISTmAb reference material

    Get PDF
    This is the final version. Available from Springer via the DOI in this record.The fraction of intact monomer in a sample (moles/moles), the monomeric purity, is measured as a quality control in therapeutic monoclonal antibodies but is often unknown in research samples and remains a major source of variation in quantitative antibody-based techniques such as immunoassay development. Here, we describe a novel multiplex technique for estimating the monomeric purity and antigen affinity of research grade antibody samples. Light scattering was used to simultaneously observe the mass of antibody binding to biosensor surfaces functionalised with antigen (revealing Fab binding kinetics) or protein A/G (PAG). Initial estimates of monomeric purity in 7 antibody samples including a therapeutic infliximab biosimilar were estimated by observing a mass deficit on the PAG surface compared to the NISTmAb standard of high monomeric purity. Monomeric purity estimates were improved in a second step by observing the mass of antigen binding to the mass of antibody on the PAG surface. The NISTmAb and infliximab biosimilar displayed tightly controlled stoichiometries for antigen binding of 1.31 ± 0.57 and 1.71 ± 0.16 (95% confidence interval)—within the theoretical limit of 1–2 antigens per antibody depending on avidity. The other antibodies in the panel displayed antigen binding stoichiometries in the range 0.06–1.15, attributed to lower monomeric purity. The monomeric purity estimates were verified by electrospray ionization mass spectrometry (ESI), the gold standard technique for structural characterization of antibodies. ESI data indicated that the NISTmAb and infliximab biosimilar samples had monomeric purity values of 93.5% and 94.7%, respectively, whilst the research grade samples were significantly lower (54–89%). Our results demonstrate rapid quality control testing for monomeric purity of antibody samples (< 15 min) which could improve the reproducibility of antibody-based experiments.EPSR
    corecore