18 research outputs found

    Climatology and dynamics of the link between dry intrusions and cold fronts during winter, Part II: Front-centred perspective

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.The conceptual picture of an extratropical cyclone typically includes a cold front and a dry intrusion (DI) behind it. By objectively identifying fronts and DIs in ECMWF ERA-Interim data for 1979–2014, Part I quantified the climatological relationship between cold fronts and DIs. Driven by the finding that front intensity and frontal precipitation are enhanced in the presence of DIs, here we employ a front-centred perspective to focus on the dynamical and thermodynamical environment of cold fronts with and without DIs in the Northern Hemisphere winter. Distinguishing between trailing fronts (that connect to a parent cyclone) and isolated fronts, examples of DIs behind each type illustrate the baroclinic environment of the trailing front, and the lack of strong temperature gradients across the isolated front. Composite analyses of North Atlantic and North Pacific fronts outline the major differences in the presence of DIs, compared to similar fronts but without DIs in their vicinity. The magnitude and spatial structure of the modification by DIs depends on the front intensity. Yet, generally with DIs, trailing fronts occur with stronger SLP dipole, deeper upper-tropospheric trough, stronger 10-m wind gusts, enhanced ocean sensible and latent heat fluxes in the cyclone cold sector and heavier precipitation. Isolated weak fronts exhibit similar behaviour, with different spatial structure. This study highlights the central role of DIs for shaping the variability of fronts and their associated environment and impact.Australian Research Council DECR

    Climatology and dynamics of the link between dry intrusions and cold fronts during winter. Part I: global climatology

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordData availability: ERA-Interim data are available online (http://apps.ecmwf.int/datasets/).Cold fronts are a primary feature of the day-to-day variability of weather in the midlatitudes, and feature in conceptual extratropical cyclone models alongside the dry intrusion airstream. Here the climatological frequency and spatial distribution of the co-occurrence of these two features are quantified, and the differences in cold front characteristics (intensity, size, and precipitation) when a dry intrusion is present or not are calculated. Fronts are objectively identified in the ECMWF ERA-Interim dataset for the winter seasons in each hemisphere and split into 3 sub-types: central fronts (within a cyclone area); trailing fronts (outwith the cyclone area but connected to a central front); and isolated fronts (not connected to a cyclone). These are then associated with dry intrusions identified using Lagrangian trajectory analysis. Trailing fronts are most likely to be associated with a DI in both hemispheres, and this occurs more frequently in the western parts of the major storm track regions. Isolated fronts are linked to DIs more frequently on the eastern ends of the storm tracks, and in the subtropics. All front types, when co-occurring with a DI, are stronger in terms of their temperature gradient, are much larger in area, and typically have higher average precipitation. Therefore, climatologically the link with DIs increases the impact of cold fronts. There are some differences in the statistics of the precipitation for trailing and isolated fronts that are further investigated in Part II of this study.Australian Research CouncilSwiss National Science FoundationBenoziyo Endowment Fund for the Advancement of Scienc

    Process-based classification of Mediterranean cyclones using potential vorticity

    Get PDF
    This is the final version. Available on open access from Copernicus Publications via the DOI in this recordCode availability:The code for the SOM classification algorithm is openly available at https://www.mathworks.com/help/deeplearning/gs/cluster-data-with-a-self-organizingmap.html (last access: 29 January 2024).Data availability: The composite cyclone tracks with the resulting cluster attribution are available in the supplementary assets of this paper. The track labels correspond to the composite cyclone track dataset at confidence level 5, made available as a Supplement by Flaounas et al. (2023) (“TRACKS_CL5.dat”).Mediterranean cyclones (MCs) govern extreme weather events across the Euro-African Basin, affecting the lives of hundreds of millions. Despite many studies addressing MCs in the last few decades, their correct simulation and prediction remain a significant challenge to the present day, which may be attributed to the large variability among MCs. Past classifications of MCs are primarily based on geographical and/or seasonal separations; however, here we focus on cyclone genesis and deepening mechanisms. A variety of processes combine to govern MC genesis and evolution, including adiabatic and diabatic processes, topographic influences, land-sea contrasts, and local temperature anomalies. As each process bears a distinct signature on the potential vorticity (PV) field, a PV approach is used to distinguish among different "types"of MCs. Here, a combined cyclone-tracking algorithm is used to detect 3190 Mediterranean cyclone tracks in ECMWF ERA5 from 1979-2020. Cyclone-centered, upper-level isentropic PV structures in the peak time of each cyclone track are classified using a self-organizing map (SOM). The SOM analysis reveals nine classes of Mediterranean cyclones, with distinct Rossby-wave-breaking patterns, discernible in corresponding PV structures. Although classified by upper-level PV structures, each class shows different contributions of lower-tropospheric PV and flow structures down to the surface. Unique cyclone life cycle characteristics, associated hazards (precipitation, winds, and temperature anomalies), and long-term trends, as well as synoptic, thermal, dynamical, seasonal, and geographical features of each cyclone class, indicate dominant processes in their evolution. Among others, the classification reveals the importance of topographically induced Rossby wave breaking to the generation of the most extreme Mediterranean cyclones. These results enhance our understanding of MC predictability by linking the large-scale Rossby wave formations and life cycles to coherent classes of under-predicted cyclone aspects.de Botton Center for Marine ScienceIsraeli Council for Higher Education (CHE)Weizmann Data Science Research CenterWeizmann Institute Sustainability and Energy Research Initiative (SAERI

    SIMS: A Hybrid Method for Rapid Conformational Analysis

    Get PDF
    Proteins are at the root of many biological functions, often performing complex tasks as the result of large changes in their structure. Describing the exact details of these conformational changes, however, remains a central challenge for computational biology due the enormous computational requirements of the problem. This has engendered the development of a rich variety of useful methods designed to answer specific questions at different levels of spatial, temporal, and energetic resolution. These methods fall largely into two classes: physically accurate, but computationally demanding methods and fast, approximate methods. We introduce here a new hybrid modeling tool, the Structured Intuitive Move Selector (SIMS), designed to bridge the divide between these two classes, while allowing the benefits of both to be seamlessly integrated into a single framework. This is achieved by applying a modern motion planning algorithm, borrowed from the field of robotics, in tandem with a well-established protein modeling library. SIMS can combine precise energy calculations with approximate or specialized conformational sampling routines to produce rapid, yet accurate, analysis of the large-scale conformational variability of protein systems. Several key advancements are shown, including the abstract use of generically defined moves (conformational sampling methods) and an expansive probabilistic conformational exploration. We present three example problems that SIMS is applied to and demonstrate a rapid solution for each. These include the automatic determination of ムムactiveメメ residues for the hinge-based system Cyanovirin-N, exploring conformational changes involving long-range coordinated motion between non-sequential residues in Ribose- Binding Protein, and the rapid discovery of a transient conformational state of Maltose-Binding Protein, previously only determined by Molecular Dynamics. For all cases we provide energetic validations using well-established energy fields, demonstrating this framework as a fast and accurate tool for the analysis of a wide range of protein flexibility problems
    corecore