8 research outputs found

    Generation and analysis of an Eucalyptus globulus cDNA library constructed from seedlings subjected to low temperature conditions

    Get PDF
    Eucalyptus globulus is the most important commercial temperate hardwood in the world because of its wood properties and due to its characteristics for biofuel production. However, only a very low number of expressed sequence tags (ESTs) are publicly available for this tree species. We constructed a cDNA from E. globulus seedlings subjected to low temperature and sequenced 9,913 randomly selected clones, generating 8,737 curated ESTs. The assembly produced 1,062 contigs and 3,879 singletons forming a Eucalyptus unigene set. Based on BLASTX analysis, 89.3% of the contigs and 88.5% of the singletons had significant similarity to known genes in the non-redundant database of GenBank. The Eucalyptus unigene set generated is a valuable public resource that provides an initial model for genes and regulatory pathways involved in cell wall biosynthesis at low temperature

    Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Eucalyptus </it>species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC) libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing.</p> <p>Results</p> <p>We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of <it>E. grandis </it>(clone BRASUZ1) digested with <it>Hind</it>III and <it>BstY</it>I, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb) to 157 Kb (Eg_Ba), very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest <it>via </it>hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the <it>E. grandis </it>chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes.</p> <p>Conclusions</p> <p>The two <it>E. grandis </it>BAC libraries described in this study represent an important milestone for the advancement of <it>Eucalyptus </it>genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×), contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in <it>Eucalyptus </it>and possibly in related species of <it>Myrtaceae</it>, including genome sequencing, gene isolation, functional and comparative genomics. Because they have been constructed using the same tree (<it>E. grandis </it>BRASUZ1) whose full genome is being sequenced, they should prove instrumental for assembly and gap filling of the upcoming <it>Eucalyptus </it>reference genome sequence.</p

    Progress in Myrtacease genetics and genomics: Eucalyptus as the pivotal genus

    Get PDF
    The status of genomics and genetics research in the Myrtaceae, a large family of dicotyledonous woody plants, is reviewed with Eucalyptus as the focal genus. The family contains over 5,650 species in 130 to 150 genera, predominantly of neo-tropical and Southern Hemisphere distribution. Several genera are well known for their economic importance worldwide. Myrtaceae are typically diploids with small to intermediate genome size. Microsatellites have been developed for several genera while higher throughput marker systems such as diversity arrays technology and single nucleotide polymorphism are available for Eucalyptus. Molecular data have been fundamental to current perspectives on the phylogeny, phylogeography and taxonomy of the Myrtaceae, while numerous studies of genetic diversity have been carried out particularly as it relates to endangered, rare, fragmented, overharvested or economically important species. Large expressed sequence tag collections for species of Eucalyptus have recently become public to support the annotation of the Eucalyptus grandis genome. Transcriptomics in Eucalyptus has advanced by microarrays and next-generation sequencing focusing on wood development. Linkage maps for Eucalyptus display high synteny across species and have been extensively used to map quantitative trait loci for a number of traits including growth, wood quality, disease and insect resistance. Candidate gene-based association genetics have successfully found marker–trait associations for wood and fiber traits. Genomic selection experiments have demonstrated clear potential to improve the efficiency of breeding programs while freeze-tolerant transgenic Eucalyptus trials have recently been initiated. The recently released E. grandis genome, sequenced to an average coverage of 8�, will open up exceptional opportunities to advance Myrtaceae genetics and genomics research

    Classical Electrostatics for Biomolecular Simulations

    No full text
    corecore