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Eucalyptus globulus is the most important commercial 
temperate hardwood in the world because of its wood 
properties and due to its characteristics for biofuel 
production. However, only a very low number of 
expressed sequence tags (ESTs) are publicly available 
for this tree species. We constructed a cDNA from E. 
globulus seedlings subjected to low temperature and 
sequenced 9,913 randomly selected clones, generating 
8,737 curated ESTs. The assembly produced 1,062 
contigs and 3,879 singletons forming a Eucalyptus 
unigene set. Based on BLASTX analysis, 89.3% of the 
contigs and 88.5% of the singletons had significant 
similarity to known genes in the non-redundant 
database of GenBank. The Eucalyptus unigene set 
generated is a valuable public resource that provides an 
initial model for genes and regulatory pathways 
involved in cell wall biosynthesis at low temperature. 

Forests cover nearly 30% of the earth surface, nearly 4 
billion hectares, serving multiple functions including 
conservation of biological diversity, renewing the oxygen 
supply of the atmosphere, preventing soil erosion and 
supplying pulp and wood (FAO, 2005). Forest tree breeding 
aims to improve the quality of trees by the selection of 
individuals with desirable traits that will later be used to 
produce trees with improved genotype. Genetic 
improvement programs such as controlled cross-pollination 
breeding have been used since the 1950s. Nevertheless, 
phenotype assessment is a complex process due to the long 
generation times of woody species (Grattapaglia, 2004). It 
is within the context of reducing this time-frame that 
functional genomics has become a powerful tool in 
forestry. 

In the last few years functional genomics has been used 
extensively for gene discovery in species whose genomes 
have not been completely sequenced. A cost-effective and 
rapid way to obtain new data from an organism is through 
partial sequencing of randomly selected cDNA clones 
(Braütigam et al. 2005). The resulting collection of 
expressed sequence tags (ESTs) reveals a portion of genes 
in an organism expressed under a particular condition. 
Using this approach, several traits have been analyzed in 
trees, such as wood formation (Allona et al. 1998; Sterky et 
al. 1998; Israelsson et al. 2003) or cold tolerance (Nanjo et 
al. 2004; Sterky et al. 2004). Unfortunately, these studies 
have focused on gene expression profiles having a direct 
effect on the particular trait studied, without expanding the 
range of effects that the set condition might have on other 
metabolic pathways. In fact, cold stress in poplar cuttings 
(Populus tremula x Populus tremuloides cv. Mush1) has 
been shown to produce variations in parameters such as 
sucrose concentration and lignin content, illustrating the 
direct effect of cold conditions on wood quality (Hausman 
et al. 2000). 

The amount and type of lignin and cellulose are important  
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in the timber and pulp industry as they have a direct effect 
on the chemical properties of the wood produced by the tree 
(Jung and Ni, 1998; Fukushima, 2001; Plomion et al. 
2001). For the production of biofuels, cellulose needs to be 
separated from lignin so it can be made available for 
enzyme hydrolysis. Therefore, several research groups have 
studied different ways by which to modify lignin and 
cellulose content on the plant cell wall. As a result, various 
studies have shown a co-regulation of these two compounds 
(Hu et al. 1999; Li et al. 2003; Rastogi and Dwivedi, 2006). 
For instance, the down-regulation of a single lignin 
biosynthetic gene resulted in a decrease of lignin 
production by the plant, while exhibiting an increase in 
cellulose production (Hu et al. 1999). Hence, the 
modification of plant cell wall composition in trees may 
provide a way to engineer wood for biofuel production. 

E. globulus is considered the most important temperate 
hardwood plantation species in the world due to its 
combination of wood properties suitable for the pulp and 
paper industry (Jones et al. 2002; Grattapaglia, 2004). This 
tree species has fast growth rates and an ability to adapt to a 
broad range of geographic locations (ranging from latitude 
35ºS to 42ºS), even though its growth rate diminishes due 
to frost conditions (Jones et al. 2002; Miranda and Pereira, 
2002). Most importantly, Eucalyptus has been listed as one 
of the candidate biomass energy crops by the U.S. 
Department of Energy (U.S. Department of Energy, 2007). 
Nevertheless, public genomic information from E. globulus 
is limited. In fact, an analysis of publicly available E. 
globulus ESTs at the GenBank EST repository (by July 06, 
2007) registered only 3,953 ESTs for E. globulus compared 
to the mostly represented tree, Pinus taeda (329,469 ESTs). 
Thus, in this study we provide and describe the first 
publicly available cDNA library from cold-treated E. 
globulus seedlings, paying particular attention to genes 
predicted to be involved in cell wall biosynthesis and the 
transcription factors suggested to be involved in their 
regulation). 

MATERIALS AND METHODS 

Plant material 

E. globulus seeds were germinated in a soil mixture and 
grown in a culture cabinet with a 16 hrs day/8 hs night 
photoperiod at a temperature of 21ºC. The library was 
constructed from 3-month old Eucalyptus globulus plants 
maintained at 4ºC degrees for 30 min. After cold treatment, 
E. globulus leaves were collected and frozen in liquid 
nitrogen until use. 

RNA extraction and cDNA library construction 

Total RNA was extracted according to the method 
described by Chang and collegues (Chang et al. 1993). 
RNA integrity was confirmed by gel electrophoresis and 1  
 



Selection of sulfur oxidizing bacterium for sulfide removal in sulfate rich wastewater to enhance biogas production 

 3

mg was quantified using a RNA standard (Invitrogen, Cat 
15620-016). Poly (A) mRNA was isolated from total RNA 
with the Stratagene Poli (A) Quick mRNA Isolation Kit 
(Stratagene, La Jolla, CA, USA). cDNA was prepared and 
cloned using the vector pExpress I exploiting the Not I and 
Eco RV restriction sites. The cDNA library was not 
normalized, i.e. no attempt was made to reduce the 
redundancy of highly expressed transcripts. 

EST sequencing, filtering and assembly 

In total, 9,913 bacterial colonies were randomly picked and 
single-pass sequence reactions performed. These sequences 
were analyzed using Phred base calling software (with 
Q>20) (Ewing et al. 1998). All traces were subjected to a 
trimming process for the removal of ribosomal RNA, poly 
(A) tails, low-quality sequences, vector and adapter regions. 
Sequences with 94% of identity over 40 or more 
nucleotides were assembled using the CAP3 software 
(Huang and Madan, 1999). 

Unigene function assignment and categorization 

The unigene set was classified and analyzed according to 
gene ontology (GO) terms (Ashburner et al. 2000) across 
functional categories. The complete unigene set was 
compared against the protein non-redundant database using 
BLASTX (Altschul et al. 1997) and analyzed with the 
InterProScan program (Zdobnov and Apweiler, 2001) to 
assign a putative function. GO terms were extracted from 
the best hits obtained from the BLASTX comparison 
against SwissProt-Trembl database (Fleischmann et al. 
1999) (E-value < E-15 and >70% of alignment coverage) 
and compared to the InterProScan GO suggestions. All the 
GO assignments were curated manually (Ashburner et al. 
2000). The unigene dataset was compared to other 
Eucalyptus cDNA libraries available in Genbank through 
BlastN program using an e-value cutoff of E-5. 

RESULTS AND DISCUSSION 

Analysis of E. globulus cDNA library 

 

Figure 1. Functional categorization of E. globulus unigenes. (a) Schematic representation of the functional categorization process. 
(b-d) Distribution of E. globulus unigenes across GO categories. Parent categories and their percentages are shown in bold, sub-
categories and the number of deduced proteins is shown in parenthesis.  
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The analysis of the 9,913 sequence-reads resulted in the 
generation of 1,062 contigs and 3,879 singletons (4,941 
unigenes) (Figure 1). The fraction of sequences represented 
by more than one cDNA was 60.9%, providing an estimate 
of library redundancy. Based on BLASTX analysis, 89.3% 
of the contigs and 88.5% of the singletons had a significant 
similarity to known genes in the non-redundant database 
(Altschul et al. 1997). As for contigs, their composition 
ranged from 2 to 118 ESTs. The deepest contigs were 
considered highly represented unigenes. Those contigs with 
more than 50 ESTs are shown as Table 1 (contigs with 20 
or more ESTs are included as Supplementary data 1). 

Overall, 541 unigenes were assigned to biological 
processes, 449 to cellular component and 493 to molecular 
function categories. This is a low number of assignments 
compared to other libraries generated in different studies of 
trees (Pinus: 5474, 5064 and 5886 respectively; Poplar: 
6158, 5751 and 6622 respectively; Spruce: 1697, 1467 and 
2188 respectively) (Quackenbush et al. 2000). We suggest 
that this is due to low average similarity between our 
database and the uniprot sequences database, in addition to 

the low alignment coverage obtained (we used both 
parameters to make the assignments). We focused our 
analyses on the physiological processes (431) being the 
most represented process related to cellular metabolism, 
with 48 unigenes related to alcohol metabolism, 95 
unigenes associated to amines and aminoacid derivative 
metabolism, 116 unigenes involved in transport and 164 
related to biosynthetic processes.   

The most represented molecular functions corresponded to 
binding and catalytic activities. The unigenes allocated to 
binding activity were associated with ion binding (130) and 
nucleic acids binding (62). Furthermore, 114 unigenes were 
associated with enzymes involved in redox reactions related 
to lignin biosynthesis and 88 with tranferase activities, 
including enzymes involved in lignin and cellulose 
biosynthesis. 

Genes predicted to be involved in wood formation 

The EST database was screened for sequences with 
significant similarity to genes involved in the biosynthesis 

 
Figure 2. Reduction of total sulfide in effluent from a Figure 2. Simplified scheme of the enzymes proposed to be involved in 
lignin biosynthesis. Green arrows represent predicted E. globulus enzyme mediated reactions whose sequences are available in 
GenBank. Blue arrows represent sequences from other Eucalyptus species available in GenBank. Red arrows represent reactions 
catalyzed by enzymes that had not been previously described for any Eucalyptus species. Bold arrows correspond to sequences found 
in our E. globulus library that were not previously described for this species. Accesion numbers for E. globulus enzymes. PAL: 
phenylalanine ammonia lyase [GenBank: AF167487]; CCR: cinnamoyl CoA reductase [GenBank: DQ084797-DQ084795, GenBank: 
AH0154889]; CAD: cinnamyl alcohol dehydrogenase [GenBank: AF109157, AF038561 and O64969], COMT: caffeic acid O-
methyltransferase [GenBank: Q9SWC2] and CCoAOMT: caffeoyl-CoA 3-O-methyltransferase [GenBank: AAD50443 and AAC26191). 
Accesion numbers for Eucalyptus enzymes, C4H: trans-cinnamate 4-hydroxylase [GenBank: AF149713-AF149715], F5H: ferulate 5-
hydroxylase [GenBank: AJ249093; AF149713-AF149715] and 4CL: 4-coumarate: CoA ligase [GenBank: NC_003070, DQ147001, 
AJ244010, AF149715, AF149714 and AF149713]. reduction reactor by sulfur oxidizing bacteria. 
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of lignin monomers and cellulose. All of the genes known 
to participate in the lignin biosynthetic pathway are 
represented in our cDNA library. Two of the predicted gene 
products, p-coumarate 3-hydroxylase (C3H) and 
CoA:shikimate/ quinate hydroxycinnamoyltransferase 
(HCT) had not been described previously in any Eucalyptus 
species. However, genes encoding trans-cinnamate 4-
hydroxylase (C4H), ferulate 5-hydroxylase (F5H) and 4-
coumarate: CoA ligase (4CL) had been described in other 
Eucalyptus species but not in E. globulus (Harakava, 2004). 
The remainder of the genes found had been previously 
described for E. globulus and published in GenBank, 
including phenylalanine ammonia lyase (PAL), cinnamoyl 
CoA reductase (CCR), cinnamyl alcohol dehydrogenase 
(CAD), caffeic acid O-methyltransferase (COMT) and 
caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) (Figure 
2) (Supplementary data 2). 

The assembly of the C3H and HCT ESTs showed that two 
isoforms of their gene-products are represented in our 
cDNA library. C3H and HCT participate in the process of 
converting p-coumaryl CoA into caffeoyl-CoA, resulting in 
the production of coniferyl (G) and sinapyl (S) lignin units. 
Down-regulation of C3H in transgenic alfalfa plants and 
Arabidopsis mutants resulted in a significant difference in 
lignin composition due to an alteration in the number and 
nature of the monolignol monomers (Franke et al. 2002; 
Ralph et al. 2006). The characterization of the Arabidopsis 
reduced epidermal fluorescence (ref8) mutant defective in 
C3H suggested that the genetic modification of this gene 
may not be appropriate for the reduction of lignin content in 
forest species because the mutant plants generated 
exhibited vascular collapse, developmental abnormalities 
and increased susceptibility to pathogen attack (Boerjan et 
al. 2003; Cooke et al. 2004). 

Three unigenes exhibited similarity to known cellulose 
synthase genes. Analysis of their predicted domains by 
InterProScan revealed that all of them contained the 
cellulose synthase domain that is composed of three 

aspartic residues and a QXXRW motif, playing a 
significant role in the catalytic activity of this enzyme 
(Krauskopf et al. 2005). However, the zinc finger domains 
(IPR001841 and IPR011011) present in cellulose synthase 
proteins were not found in our sequences since the 
sequences were not full-length. The deduced E. globulus 
proteins were compared with the ones previously described 
for E. grandis (Ranik and Myburg, 2006) as no sequences 
were available for E. globulus (Supplementary data 3).  

Transcription factors involved in wood formation 

Of the 56 transcription factor families described in 
Arabidopsis and 63 in rice (Guo et al. 2005; Gao et al. 
2006), 11 of them were represented in our library: 
auxin/indole-3-acetic acid (AUX/IAA) family, B3 family, 
basic/helix-loop-helix (bHLH) family, basic leucine zip 
(bZIP) family, GRAS family, homeodomain-leucine zipper 
(HD-Zip) (HB) family, heat shock family (HSF), MYB 
family, WRKY family, zinc finger homeobox (ZF-HD) 
family and ZIM family. Transcription factors families such 
as AUX/IAA, MYB and HD containing domains (zinc 
finger proteins and homeodomain-leucine zipper) regulate 
the expression of genes that participate in xylem 
development and secondary wall formation (lignin and 
cellulose biosynthesis) (Oh et al. 2003; Cánovas et al. 
2004). 

Many of the genes encoding the enzymes of general 
phenylpropanoid metabolism, such as PAL, C4H, 4CL, 
COMT and CAD contain conserved motifs within their 
promoters that are recognized by plant MYB transcription 
factors (Tamagnone et al. 1998). Twelve members of the 
MYB family were found in our library. Some of them had a 
best BLASTX hit with GOLDEN2-like 1 gene, LHY-CCA1-
like 5 gene and DIVARICATA gene. The coverage of the 
sequences with their best BLASTX hit ranged from 25% 
and 100%. Two E. gunnii MYB transcription factors 
sequences were found in GenBank [GenBank: AJ576023- 
AJ576024] (Goicoechea et al. 2005). Based on BLASTN 

Table 1. Contigs with ESTs highly represented. Assigned function is indicated in contigs with more than 50 ESTs. 

 
Number 

ESTs 
Contigs 

length (nt) Assigned function Relative 
organism 

Similarity 
(%) 

Accession 
number (GI) 

118 1604 Plastidic aldolase Nicotiana 
paniculata 94.8 4827253 

86 1509 Chloroplast latex aldolase-like protein Manihot 
esculenta 90.9 56122688 

81 979 Ribulose-1,5-bisphosphate 
carboxylase/oxygenase small subunit Panax ginseng 93.2 77157637 

80 1693 Ribulose-1,5-bisphosphate 
coarboxylase/oxygenase activase precursor 

Malus x 
domestica 93.1 415852 

73 1590 Glyceraldehydes-3-phosphate dehydrogenase 
A subunit Glycine max 87.8 77540210 

51 1721 AAA ATPase, central region; homeodomain-
like 

Medicago 
truncatula 89.1 92870561 

 



Kantachote, D. and Pillay, B. 

 6

analysis, these sequences were different from the ones 
obtained in our library. Others families less represented in 
our library belonged to the ZF family and bZIP (with seven 
members each), WRKY family (five members with 
coverage of their best BLASTX hit between 12% and 50%) 
and one member of the AUX/IAA family, (Supplementary 
data 4).  

In addition, the data gathered through these analyses was 
compared with the few existing Eucalyptus cDNA libraries 
currently found in GenBank. The comparison was made 
against Eucalyptus gunnii (8,538 ESTs), Eucalyptus 
globulus subsp. bicostata (2,685 ESTs), Eucalyptus grandis 
(1,574 ESTs ) and Eucalyptus globulus ‘blue gum’ (1,266 
ESTs). BlastN comparisons against our E. globulus 
database revealed a low level of similarity between our 
sequenced library and the available datasets. The number of 
sequences that have at least one match with E-values better 
than 1E-5 for each library were 1,335 ESTs for E. gunnii 
(15%), 464ESTs for E. globulus subsp. bicostata (17%), 
267 for E. grandis (17%) and 261 ESTs for E. globulus 
‘blue gum’ (17%). 

In conclusion, a unigene set of approximately 4900 
unigenes was obtained from our E. globulus cDNA library. 
Analysis of its content has provided valuable data for the 
future metabolic engineering of plant cell walls by 
identifying new potential targets that will allow future 
modification for biofuel production and industrial use. In 
addition, our results will be useful for comparative genomic 
studies among hardwoods and softwoods.  
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APPENDIX 
SUPLEMENTARY DATA 

 
Supplementary data 1. Contigs with ESTs highly represented. Assigned function is indicated in contigs with more than 20 ESTs. 

 

aTemperature incubation at 30ºC, bInitial pH at 7. 
µ: mean value and standard deviation of three determinations. 
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Supplementary data 2. Analysis of E. globulus unigenes corresponding to enzymes involved in wood formation. 

 

Gene Name Best Blastx Hit Score E-value Coverage Domains 

EgPAL1 PAL 
Daucus carota 387 8e-113 29.09% 

IPR001106
IPR008948
PF00221

EgPAL2 PAL 
Camellia sinensis 306 8e-82 29.13% 

IPR001106
IPR008948
PF00221

EgPAL3 PAL 
Citrus limon 278 2e-73 25.76% 

IPR001106
IPR008948
PF00221

EgC4H C4H 
Populus kitakamiensis 482 3e-142 53.07% 

IPR001128
IPR002401
PF00067

Eg4CL1 4CL 
Populus balsamifera subsp. trichocarpa x Populus deltoides 246 6e-64 33.16% IPR000873

PF00501 

Eg4CL2 4CL 
Eucalyptus camaldulensis 260 

4e-68  

  36.95% IPR000873
PF00501 

EgHCT1 HCT 
Nicotiana tabacum 331 4e-89 49.66% IPR003480

IPR02458 

EgHCT2 HCT 
Oryza sativa (japonica cultivar-group) 186 1e-45 45.13% IPR003480

IPR02458 

EgC3H1 C3H-1 
Ocimum basilicum 249 3e-72 29.49% 

IPR001128
IPR002401
PF00067

EgC3H2 C3H 
Ocimum basilicum 375 1e-102 44.41% 

IPR001128
IPR002401
PF00067

EgCOMT COMT 
Eucalyptus gunnii 451 1e-125 63.66% 

IPR001077
PF00891

IPR011991

EgCCoAOMT1 CCoAOMT 
Plantago major 96.7 6e-19 47.27% IPR002935

PF01596 

EgCCoAOMT2 CCoAOMT 
Ammi majus 121 2e-26 42.32% IPR002935

PF01596 

EgCCR1 CCR 
Eucalyptus gunnii 443 1e-123 63.00% IPR001509

PF01370 

EgCCR2 CCR 
Arabidopsis thaliana 256 5e-67 61.68% IPR001509

PF01370 

EgF5H1 F5H 
Camptotheca acuminata 539 1e-151 69.26% 

IPR001128
IPR002401
PF00067

EgF5H2 F5H 
Camptotheca acuminata 126 8e-28 14.00% 

IPR001128
IPR002401
PF00067

EgCAD1 CAD 
Eucalyptus globulus 530 1e-149 88.76% 

IPR002085
IPR002328
IPR011032

EgCAD2 CAD 
Arabidopsis thaliana 220 4e-56 57.91% IPR001509 
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Supplementary data 3. Analysis of E. globulus cellulose synthase unigenes. 

 
Gene Name Best Hit with E. grandisi Best Blastx Hit Score E-value Coverage Domains 

EgCesA1 EgrCesA5 CesA 
Populus tremula x Populus tremuloides 400 1e-110 24.11% IPR005150

PF03552 

EgCesA2 No EgrCesA related CesA 
Medicago truncatula 238 2e-62 28.34% IPR005150

PF03552 

EgCesA3 EgrCesA4 CesA4 
Eucalyptus grandis 309 9e-83 17.4% IPR005150

PF03552 
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Supplementary data 4. Analysis of E. globulus unigenes corresponding to transcription factors. 
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