40 research outputs found

    Rock glaciers as water stores in the Bolivian Andes: An assessment of their hydrological importance

    Get PDF
    Journal ArticleCopyright © 2015 University of Colorado at Boulder, Institute of Arctic and Alpine ResearchWater scarcity is a growing issue for high altitude arid countries like Bolivia, where serious water resource concerns exist because of climate change and population growth. In this study we use a recent Bolivian rock glacier inventory (Rangecroft et al., 2014) to estimate the water equivalent storage of these understudied cryospheric reserves. This paper shows that Bolivian rock glaciers currently store between 11.7 and 137 million cubic meters of water. Rock glacier water equivalents are compared to corresponding ice glacier water equivalent to allow an assessment of the hydrological importance of rock glaciers as water stores in this water scarce region. It can be seen that in the densely glaciated Cordillera Real (15°-16°S) rock glaciers form a small component of mountain water stores; however, along the Cordillera Occidental (17°-22°S), where ice glaciers are absent, rock glaciers are a more important part of the cryospheric water store, suggesting that they could be important for local water management. This is the first time that the water equivalence of the Bolivian rock glacier store has been quantified and is a first step toward assessing the contribution and importance of alternative high altitude water sources.NER

    GC Insights: Lessons from participatory water quality research in the upper Santa River basin, Peru

    Get PDF
    Here we share four key lessons from an inter-disciplinary project (Nuestro Rio) that gathered community perspectives on local water quality in the Santa River basin (Peru) utilising a digital technological approach where we collected data via a novel photo elicitation app, supported by a field work campaign. The lessons explored in this article provide insights into challenges and opportunities for researchers considering developing technological tools for encouraging participation and engagement in marginalised communities

    Anthropogenic activities alter drought termination

    Get PDF
    Despite the increasing influence of human activities on water resources in our current Anthropocene era, the impacts of these activities on the duration, rate and timing of the recovery of drought events, known as the drought termination phase, remain unknown. Here, we present the first assessment of how different human activities (i.e. water abstractions, reservoirs, water transfers) affect drought termination. Six case studies in Europe were used to analyse the human influence on streamflow drought termination characteristics. For all case studies, we compared the drought and drought termination characteristics derived from a human-influenced time series of streamflow (observation data) and a naturalised time series (modelled data) for the same period. Overall, results clearly demonstrate the influence of human activities on drought terminations in all the studied catchments. Groundwater abstractions, reservoirs and mixed influences were all found to increase the average duration of drought termination, whereas water transfers into the catchment decreased drought termination duration. Results also show that average drought termination rates increased in all case studies due to the human influence. Furthermore, start and end months of the termination phase were more skewed to certain months in human-influenced data than in the naturalised situation. Future research could extend this new knowledge by looking to add further case studies and covering different human activities to gain a wider understanding on how human actions modify hydrological droughts and their recovery. Furthering this work could also help to improve the forecasting of drought recovery in the Anthropocene, which is important for informing drought management decisions

    Payment for ecosystem services in Peru: Assessing the socio-ecological dimension of water services in the upper Santa River basin

    Get PDF
    Increasing pressures on ecosystems in the Latin American region, as well as the adoption of multilateral conservation commitments, have led to the implementation of instruments that are economic in nature but oriented towards the recovery, conservation, and functioning of ecosystems such as Payment for Ecosystem Services (PES). In the Peruvian Andes, hydro-climatic factors and land-use changes are affecting the capacity of the ecosystems of the glaciated Cordillera Blanca to provide water services, in terms of both quality and quantity, to the main users of the Santa River basin. Thus, this study analyses how the socio-ecological interactions affect, and are affected by, the planned introduction of water-related PES in the Quillcay sub-basin, the most populated sub-basins along the Santa River basin. We use a conceptual model based on the current evolution of the water metabolism approach to integrate into a common language of analysis the multiple dimensions of water: water as an ecological fund, as a service, and as a political asset. To explore the interface of these three domains of analysis we rely on a mixed-method data collection: primary data collection through a stakeholder survey and interviews and a review of information from secondary sources. The result of our case study shows that both the ecological dimension and the social dimension affect on the PES project and vice versa. These complex interactions could result in the design of a mechanism in which not all stakeholders benefit equally. This raises the need to recognise the multidimensional nature of water in the design and implementation of policies, and the importance of identifying processes and barriers which affect the success of these policies without making invisible the direct effect they also have on social-ecological systems

    Contribution of glaciers to water, energy and food security in mountain regions: current perspectives and future priorities

    Get PDF
    Mountain glaciers are crucial sources of fresh water, contributing directly and indirectly to water, energy and food supplies for hundreds of millions of people. Assessing the impact of diminishing glacial meltwater contributions to the security of this resource is critical as we seek to manage and adapt to changing freshwater dynamics in a warming world. Both water quantity and quality influence water (in)security, so understanding the fluxes of water, sediment and contaminants through glacial and proglacial systems is required for holistic assessment of meltwater contribution to downstream resource security. In this paper we consider the socio-environmental role of and pressures on glacier-fed waters, discuss key research priorities for the assessment of both the quantity and quality of meltwater and reflect on the importance of situating our understanding within a transdisciplinary and inclusive research landscape

    Unravelling and understanding local perceptions of water quality in the Santa basin, Peru

    Get PDF
    Water quality is an integral part of water security. Measuring the physico-chemical indicators for water quality can provide an objective picture of water health, but it does not provide information on lived experiences related to water quality, expectations of water resources, nor how the quality of water affects its usage. Perceptual information and traditional ecological knowledge on water quality can help to understand interactions between water and people, and thereby support locally appropriate sustainable water resource strategies. Accordingly, our project sought to collect and synthesise insights from local perspectives on water quality in the upper Santa River basin, Peru, a region where water quality directly relates to people’s livelihoods. Perceptual data was collected via the Nuestro Rio mobile app (N = 149) as well as walking interviews (n = 84) (July-August 2021) in two main study areas, Olleros and Catac. We find that water quality perspectives differ within, and between, study areas and communities, however four overarching themes were identified, and are explored here: i) environmental indicators for water quality; ii) water uses; and iii) perceived causes of water quality; iv) water quality perceptions behind emotions. Most rural participants felt the main cause of poor water quality was mineral pollution, likely linked to local geology, however we also found that local perceptions of water quality depend on water usage, directly linked to domestic water use and agricultural livelihoods. Qualitative data highlighted the complex relationships between water quality, perceptions and emotions. More inclusive citizen-based science that considers what people observe, think and feel about the quality of their rivers can help provide a much deeper contextual understanding of dynamic human-water systems, with further benefits for improving water management and policy implementation

    Pickles and warfarin interaction: a case-based review

    Full text link
    corecore