259 research outputs found
Comparison of polymerase chain reaction and bacterial culture for Salmonella detection in the Muscovy duck in Trinidad and Tobago
Objectives: The purpose of this study was to investigate the presence and serovar identity of Salmonella, at the national level, in farmed Muscovy ducks (Cairina moschata) in Trinidad and Tobago, and to compare the relative benefits of bacterial culture to those of polymerase chain reaction (PCR) for use in the routine detection and surveillance of Salmonella in these ducks.
Methods: From March-September 2003, 110 fecal samples were collected from 82 farms across the islands of Trinidad and Tobago. Salmonella was isolated from fresh and frozen samples and the serotype of each was determined through bacterial culture. An in-house, nested PCR that detects all pathogenic Salmonella species was utilized in analyzing the samples.
Results: Five samples were positive for Salmonella by bacterial culture, whereas 44 were positive by the nested PCR. Serovars isolated were Kiambu, Orion, Uganda, and two isolates from Group E1 whose H antigens could not be fully characterized. Of the samples, 87 (79%) gave equivalent PCR results for both enrichment broths-28 were positive for both and 59 were negative for both). However, 16 samples were positive for one broth, but not for the other, with the majority (14 of the 16) resulting positive for Selenite broth. PCR results for seven samples were inconclusive due to ambiguous band size or multiple bands near the expected band size.
Conclusions: In Trinidad and Tobago, the Muscovy duck does not appear to be a significant source of S. typhimurium or S. enteritidis, but it does harbor other Salmonella species. In-house, nested PCR represents a simple, relatively inexpensive and potentially more sensitive method than bacterial culture for the routine surveillance of pathogenic Salmonella in the Muscovy duck
Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity
We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the
state-complexity of representing sub- or superword closures of context-free
grammars (CFGs): (1) We prove a (tight) upper bound of on
the size of nondeterministic finite automata (NFAs) representing the subword
closure of a CFG of size . (2) We present a family of CFGs for which the
minimal deterministic finite automata representing their subword closure
matches the upper-bound of following from (1).
Furthermore, we prove that the inequivalence problem for NFAs representing sub-
or superword-closed languages is only NP-complete as opposed to PSPACE-complete
for general NFAs. Finally, we extend our results into an approximation method
to attack inequivalence problems for CFGs
Repetitions in infinite palindrome-rich words
Rich words are characterized by containing the maximum possible number of
distinct palindromes. Several characteristic properties of rich words have been
studied; yet the analysis of repetitions in rich words still involves some
interesting open problems. We address lower bounds on the repetition threshold
of infinite rich words over 2 and 3-letter alphabets, and construct a candidate
infinite rich word over the alphabet with a small critical
exponent of . This represents the first progress on an open
problem of Vesti from 2017.Comment: 12 page
A nested-PCR with an Internal Amplification Control for the detection and differentiation of Bartonella henselae and B. clarridgeiae: An examination of cats in Trinidad
BACKGROUND: Bartonella species are bacterial blood parasites of animals capable of causing disease in both animals and man. Cat-Scratch Disease (CSD) in humans is caused mainly by Bartonella henselae and is acquired from the cat, which serves as a reservoir for the bacteria. A second species, B. clarridgeiae is also implicated in the disease. Diagnosis of Bartonellosis by culture requires a week or more of incubation on enriched media containing blood, and recovery is often complicated by faster growing contaminating bacteria and fungi. PCR has been explored as an alternative to culture for both the detection and species identification of Bartonella, however sensitivity problems have been reported and false negative reactions due to blood inhibitors have not generally been addressed in test design. METHODS: A novel, nested-PCR was designed for the detection of Bartonella henselae and B. clarridgeiae based on the strategy of targeting species-specific size differences in the 16S-23S rDNA intergenic regions. An Internal Amplification Control was used for detecting PCR inhibition. The nested-PCR was utilized in a study on 103 blood samples from pet and stray cats in Trinidad. RESULTS: None of the samples were positive by primary PCR, but the Nested-PCR detected Bartonella in 32/103 (31%) cats where 16 were infected with only B. henselae, 13 with only B. clarridgeiae and 3 with both species. Of 22 stray cats housed at an animal shelter, 13 (59%) were positive for either or both species, supporting the reported increased incidence of Bartonella among feral cats. CONCLUSION: The usefulness of a single PCR for the detection of Bartonella henselae and B. clarridgeiae in the blood of cats is questionable. A nested-PCR offers increased sensitivity over a primary PCR and should be evaluated with currently used methods for the routine detection and speciation of Bartonella henselae and B. clarridgeiae. In Trinidad, B. henselae and B. clarridgeiae are the predominant species in cats and infection appears highest with stray cats, however B. clarridgeiae may be present at levels similar to that of B. henselae in the pet population
BSACI guidance for the implementation of Palforzia\uae peanut oral immunotherapy in the United Kingdom: A Delphi consensus study
Clinical & Experimental Allergy\ua9 2024 The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd.Background: Palforzia\uae enables the safe and effective desensitisation of children with peanut allergy. The treatment pathway requires multiple visits for dose escalation, up-dosing, monitoring of patients taking maintenance therapy and conversion onto daily real-world peanut consumption. The demand for peanut immunotherapy outstrips current National Health Service (NHS) capacity and requires services to develop a national consensus on how best to offer Palforzia\uae in a safe and equitable manner. We undertook a Delphi consensus exercise to determine guidance statements for the implementation of Palforzia\uae-based immunotherapy in the NHS. Methods: We undertook focus groups with children and young people who had received peanut immunotherapy to assess what was important for them and their carers. Common themes from patients formed the basis of creating draft statements. A panel of 18 multi-disciplinary professionals engaged in two rounds of anonymised voting to adapt the statements and score their importance. A final consensus workshop consolidated any variation in comments and scores to develop the final guidance statements. Results: The panel achieved consensus on 91% (29/32) of guidance statements, demonstrating strong consensus around pragmatic principles for assuring the integrity of consent, safety and conversion from Palforzia\uae to real-world peanut products. The greatest amount of feedback was generated from three broad issues; (i) whether eligibility assessment should include compulsory peanut challenges and whether these should be designed to assess the threshold at which patients react to peanut, (ii) the governance processes to best ensure that patients\u27 interests are prioritised and (iii) how to safely transition young people to other services, or discharge them, while they are taking daily peanut. Conclusions: This consensus highlights the urgent need for the NHS to increase capacity for undertaking diagnostic food challenges as well as developing Palforzia\uae immunotherapy pathways. The voting panel agreed that families of peanut allergic children should be made aware of immunotherapy, that eligibility assessment should include how co-morbid conditions are managed and that services should monitor for adverse effects. The finalised statements are now published online for clinical practice in the UK. These guidance statements will be adapted in the coming years as more evidence is published and as the international experience of peanut immunotherapy evolves
Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells
A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.00
Ganglioside GM3 Has an Essential Role in the Pathogenesis and Progression of Rheumatoid Arthritis
Rheumatoid arthritis (RA), a chronic systemic inflammatory disorder that principally attacks synovial joints, afflicts over 2 million people in the United States. Interleukin (IL)-17 is considered to be a master cytokine in chronic, destructive arthritis. Levels of the ganglioside GM3, one of the most primitive glycosphingolipids containing a sialic acid in the structure, are remarkably decreased in the synovium of patients with RA. Based on the increased cytokine secretions observed in in vitro experiments, GM3 might have an immunologic role. Here, to clarify the association between RA and GM3, we established a collagen-induced arthritis mouse model using the null mutation of the ganglioside GM3 synthase gene. GM3 deficiency exacerbated inflammatory arthritis in the mouse model of RA. In addition, disrupting GM3 induced T cell activation in vivo and promoted overproduction of the cytokines involved in RA. In contrast, the amount of the GM3 synthase gene transcript in the synovium was higher in patients with RA than in those with osteoarthritis. These findings indicate a crucial role for GM3 in the pathogenesis and progression of RA. Control of glycosphingolipids such as GM3 might therefore provide a novel therapeutic strategy for RA
Indigenous crop diversity maintained despite the introduction of major global crops in an African centre of agrobiodiversity
Societal Impact Statement
The global success and expansion of a small pool of major crops, including rice, wheat and maize, risks homogenising global agriculture. Focusing on the agriculturally diverse Ethiopian Highlands, this study tested whether farm diversity tends to be lower among farmers who grow more introduced crops. Surprisingly, it was found that farmers have successfully integrated introduced crops, resulting in more diverse and heterogenous farms without negatively impacting indigenous crop diversity. This is encouraging because diverse farms, comprising indigenous agricultural systems supplemented by introduced crops, may help address global challenges such as food insecurity.
Summary
The global expansion of a handful of major crops risks eroding indigenous crop diversity and homogenising agroecosystems, with significant consequences for sustainable and resilient food systems. Here, we investigate the farm-scale impact of introduced crops on indigenous agroecosystems. We surveyed 1369 subsistence farms stratified across climate gradients in the Ethiopian Highlands, a hotspot of agrobiodiversity, to characterise the richness and cultivated area of the 83 edible crops they contained. We further categorise these crops as being indigenous to Ethiopia, or introduced across three different eras. We apply non-metric multidimensional scaling and mixed effects modelling to characterise agroecosystem composition across farms with different proportions of introduced crops. Crops from different periods do not differ significantly in frequency or abundance across farms. Among geographically matched pairs of farms, those with higher proportions of modern introduced crops had significantly higher overall crop richness. Furthermore, farms with a high proportion of modern introduced crops showed higher heterogeneity in crop composition. An analysis of socio-economic drivers indicated that poverty is negatively associated with the cultivated area of introduced crops. In our Ethiopian case study, global patterns of major crop expansion are not necessarily associated with agrobiodiversity loss at the farm scale or higher homogeneity across indigenous agricultural systems. Importantly, socioeconomic factors may influence farmers' propensity to adopt novel species, suggesting targets for agricultural extension policies. Given the rapid climatic, economic and demographic changes impacting global food systems and the threats to food security these entail, robust indigenous agricultural systems enriched with diverse introduced crops may help maintain resilience
Characterization of the apoptotic response of human leukemia cells to organosulfur compounds
Background: Novel therapeutic agents that selectively induce tumor cell death are urgently needed in the clinical management of cancers. Such agents would constitute effective adjuvant approaches to traditional chemotherapy regimens. Organosulfur compounds (OSCs), such as diallyl disulfide, have demonstrated anti-proliferative effects on cancer cells. We have previously shown that synthesized relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richi, possess tumor-specific antiproliferative effects and are thus promising lead candidates.
Methods: Because our structure-activity analyses showed that regions flanking the disulfide bond mediated specificity, we synthesized 18 novel OSCs by structural modification of the most promising dysoxysulfone derivatives. These compounds were tested for anti-proliferative and apoptotic activity in both normal and leukemic cells.
Results: Six OSCs exhibited tumor-specific killing, having no effect on normal bone marrow, and are thus candidates for future toxicity studies. We then employed mRNA expression profiling to characterize the mechanisms by which different OSCs induce apoptosis. Using Gene Ontology analysis we show that each OSC altered a unique set of pathways, and that these differences could be partially rationalized from a transcription factor binding site analysis. For example, five compounds altered genes with a large enrichment of p53 binding sites in their promoter regions (p < 0.0001).
Conclusions: Taken together, these data establish OSCs derivatized from dysoxysulfone as a novel group of compounds for development as anti-cancer agents
- …