241 research outputs found

    Dynamics of fingering convection I: Small-scale fluxes and large-scale instabilities

    Get PDF
    Double-diffusive instabilities are often invoked to explain enhanced transport in stably-stratified fluids. The most-studied natural manifestation of this process, fingering convection, commonly occurs in the ocean's thermocline and typically increases diapycnal mixing by two orders of magnitude over molecular diffusion. Fingering convection is also often associated with structures on much larger scales, such as thermohaline intrusions, gravity waves and thermohaline staircases. In this paper, we present an exhaustive study of the phenomenon from small to large scales. We perform the first three-dimensional simulations of the process at realistic values of the heat and salt diffusivities and provide accurate estimates of the induced turbulent transport. Our results are consistent with oceanic field measurements of diapycnal mixing in fingering regions. We then develop a generalized mean-field theory to study the stability of fingering systems to large-scale perturbations, using our calculated turbulent fluxes to parameterize small-scale transport. The theory recovers the intrusive instability, the collective instability, and the gamma-instability as limiting cases. We find that the fastest-growing large-scale mode depends sensitively on the ratio of the background gradients of temperature and salinity (the density ratio). While only intrusive modes exist at high density ratios, the collective and gamma-instabilities dominate the system at the low density ratios where staircases are typically observed. We conclude by discussing our findings in the context of staircase formation theory.Comment: 23 pages, 9 figures, submitted to JF

    Dynamics of fingering convection II: The formation of thermohaline staircases

    Get PDF
    Regions of the ocean's thermocline unstable to salt fingering are often observed to host thermohaline staircases, stacks of deep well-mixed convective layers separated by thin stably-stratified interfaces. Decades after their discovery, however, their origin remains controversial. In this paper we use 3D direct numerical simulations to shed light on the problem. We study the evolution of an analogous double-diffusive system, starting from an initial statistically homogeneous fingering state and find that it spontaneously transforms into a layered state. By analysing our results in the light of the mean-field theory developed in Paper I, a clear picture of the sequence of events resulting in the staircase formation emerges. A collective instability of homogeneous fingering convection first excites a field of gravity waves, with a well-defined vertical wavelength. However, the waves saturate early through regular but localized breaking events, and are not directly responsible for the formation of the staircase. Meanwhile, slower-growing, horizontally invariant but vertically quasi-periodic gamma-modes are also excited and grow according to the gamma-instability mechanism. Our results suggest that the nonlinear interaction between these various mean-field modes of instability leads to the selection of one particular gamma-mode as the staircase progenitor. Upon reaching a critical amplitude, this progenitor overturns into a fully-formed staircase. We conclude by extending the results of our simulations to real oceanic parameter values, and find that the progenitor gamma-mode is expected to grow on a timescale of a few hours, and leads to the formation of a thermohaline staircase in about one day with an initial spacing of the order of one to two metres.Comment: 18 pages, 9 figures, associated mpeg file at http://earth.uni-muenster.de/~stellma/movie_small.mp4, submitted to JF

    Thermochemical conversion of plant biomass in the energotechnological complex with heat recovery

    Get PDF
    Basic performance principles of the energotechnological complex used for thermochemical conversion of plant biomass with the influence of a magnetic field and high recovery of spent heat carrier energy have been developed. The concurrent saturation of a spent heat carrier in a loading bunker with the steam from humid biomass aimed at using a certain part of a spent heat carrier, which is clear from oxygen and nitrogen oxide, and moisture in thermochemical recovery has been considered as an important aspect of recuperation processes. A mathematical model has been developed and the results of numerical simulation have been presented for determining the distribution of temperature, velocity and pressure fields in a loading bunker. Prospective assessment of the engineering solutions developed for heat energy recovery of a double-flow spent heat carrier has been conducted

    Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field

    Get PDF
    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices’ structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions

    Geometry of integrable dynamical systems on 2-dimensional surfaces

    Full text link
    This paper is devoted to the problem of classification, up to smooth isomorphisms or up to orbital equivalence, of smooth integrable vector fields on 2-dimensional surfaces, under some nondegeneracy conditions. The main continuous invariants involved in this classification are the left equivalence classes of period or monodromy functions, and the cohomology classes of period cocycles, which can be expressed in terms of Puiseux series. We also study the problem of Hamiltonianization of these integrable vector fields by a compatible symplectic or Poisson structure.Comment: 31 pages, 12 figures, submitted to a special issue of Acta Mathematica Vietnamic

    An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons

    Full text link
    We report the design, fabrication and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor > 45 % is demonstrated at a wavelength of 780 nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.Comment: The final publication is available at http://www.springerlink.com. http://dx.doi.org/10.1007/s11468-011-9303-

    Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths

    Get PDF
    We report on the fabrication and characterization of straight dielectric-loaded surface plasmon polaritons waveguides doped with leadsulfide quantum dots as a near infra-red gain medium. A loss compensation of ~33% (an optical gain of ~143 cm−1 ) was observed in the guided mode. The mode propagation, coupling efficiency and stimulated emission were characterized using leakage radiation microscopy. The guided mode signature was separated using spatial filters in the Fourier plane of the microscope for quantitative measurements of stimulated emission

    Влияние сукцинатсодержащих препаратов на физическую работоспособность и восстановление после нагрузок

    Get PDF
    An assessment of the influence of 2-ethyl-6-methyl-3-hydroxypyridine succinate (Mexidol) on the physical performance of small laboratory animals and recovery after exercise was made. As a result, it was found that a single application of Mexidol increases the endurance of animals, estimated as maximum swimming time, 1.57 times. With the course of the drug, there was a tendency to improve performance with access to the plateau after the 3rd week, similar to the comparative drug - bis {2 - [(2E) -4-hydroxy-4-oxobut-2-enyloxy] -N, N-diethylethanaminium} butanedioate.Проведена оценка влияния 2-этил-6-метил-3-гидроксипиридина сукцината (Мексидол) на физическую работоспособность мелких лабораторных животных и восстановление после нагрузки. В результате установлено, что однократное применение препарата повышает выносливость животных, оцениваемую как максимально время плавания, в 1,57 раза. При курсовом применении препарата наблюдалась тенденция к повышению работоспособности с выходом на плато после 3-й недели, аналогично препарату сравнения
    corecore