9,796 research outputs found

    Tripartite Entanglement versus Tripartite Nonlocality in Three-Qubit Greenberger-Horne-Zeilinger-Class States

    Get PDF
    We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement.We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states

    A study of the relationship between macroscopic measures and physical processes occurring during crack closure

    Get PDF
    Issued as Fiscal year report, Annual reports [nos. 1-3], and Final report, Project E-18-665 (subproject: E-18-666

    Building validation tools for knowledge-based systems

    Get PDF
    The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification

    Characterizing upward lightning with and without a terrestrial gamma-ray flash

    Full text link
    We compare two observations of gamma-rays before, during, and after lightning flashes initiated by upward leaders from a tower during low-altitude winter thunderstorms on the western coast of Honshu, Japan. While the two leaders appear similar, one produced a terrestrial gamma-ray flash (TGF) so bright that it paralyzed the gamma-ray detectors while it was occurring, and could be observed only via the weaker flux of neutrons created in its wake, while the other produced no detectable TGF gamma-rays at all. The ratio between the indirectly derived gamma-ray fluence for the TGF and the 95% confidence gamma-ray upper limit for the gamma-ray quiet flash is a factor of 1×1071\times10^7. With the only two observations of this type providing such dramatically different results -- a TGF probably as bright as those seen from space and a powerful upper limit -- we recognize that weak, sub-luminous TGFs in this situation are probably not common, and we quantify this conclusion. While the gamma-ray quiet flash appeared to have a faster leader and more powerful initial continuous current pulse than the flash that produced a TGF, the TGF-producing flash occurred during a weak gamma-ray "glow", while the gamma-ray quiet flash did not, implying a higher electric field aloft when the TGF was produced. We suggest that the field in the high-field region approached by a leader may be more important for whether a TGF is produced than the characteristics of the leader itself.Comment: 21 pages, 6 figures, accepted for publication by the Journal of Geophysical Research - Atmosphere

    An Entomopathogenic Nematode by Any Other Name

    Get PDF
    Among the diversity of insect-parasitic nematodes, entomopathogenic nematodes (EPNs) are distinct, cooperating with insect-pathogenic bacteria to kill insect hosts. EPNs have adapted specific mechanisms to associate with and transmit bacteria to insect hosts. New discoveries have expanded this guild of nematodes and refine our understanding of the nature and evolution of insect–nematode associations. Here, we clarify the meaning of “entomopathogenic” in nematology and argue that EPNs must rapidly kill their hosts with the aid of bacterial partners and must pass on the associated bacteria to future generations

    Neutron scattering study of a quasi-2D spin-1/2 dimer system Piperazinium Hexachlorodicuprate under hydrostatic pressure

    Full text link
    We report inelastic neutron scattering study of a quasi-two-dimensional S=1/2 dimer system Piperazinium Hexachlorodicuprate under hydrostatic pressure. The spin gap {\Delta} becomes softened with the increase of the hydrostatic pressure up to P= 9.0 kbar. The observed threefold degenerate triplet excitation at P= 6.0 kbar is consistent with the theoretical prediction and the bandwidth of the dispersion relation is unaffected within the experimental uncertainty. At P= 9.0 kbar the spin gap is reduced to 0.55 meV from 1.0 meV at ambient pressure.Comment: 4 pages, 5 figure

    New Constraints on Plate Tectonic Puzzle of the SW Pacific

    Get PDF
    A long-standing problem in the tectonics of the southwest Pacific has been the lack of closure of the plate circuit linking the Antarctic, Australia, Lord Howe Rise, and Pacific plates in late Cretaceous and early Tertiary time [Molnar et al., 1975]. Avoiding unacceptable overlaps and underlaps in reconstructions of these plates requires invoking relative motion on one or more nebulous plate boundaries somewhere along the plate circuit, such as between East and West Antarctica, within West Antarctica [Stock and Molnar, 1987], or perhaps between the Lord Howe Rise and Challenger Plateau in the Tasman Sea [Lawver and Gahagan, 1994]. This problem is of more than mere local interest since the motion of the Pacific plate relative to the rest of the globe is constrained through its connection with West Antarctica

    Transition from Baryon- to Meson-Dominated Freeze Out -- Early Decoupling around 30 A GeV?

    Get PDF
    The recently discovered sharp peak in the excitation function of the K+/pi+ ratio around 30 A GeV in relativistic heavy-ion collisions is discussed in the framework of the Statistical Model. In this model, the freeze-out of an ideal hadron gas changes from a situation where baryons dominate to one with mainly mesons. This transition occurs at a temperature T = 140 MeV and baryon chemical potential mu(B) = 410 MeV corresponding to an energy of sqrt(s) = 8.2 GeV. The calculated maximum in the K+/pi+ ratio is, however, much less pronounced than the one observed by the NA49 Collaboration. The smooth increase of the K-/pi- ratio with incident energy and the shape of the excitation functions of the Lambda/pi+, Xi-/pi+ and Omega/pi ratios all exhibiting maxima at different incident energies, is consistent with the presently available experimental data. The measured K+/pi+ ratio exceeds the calculated one just at the incident energy when the freeze-out condition is changing. We speculate that at this point freeze-out might occur in a modified way. We discuss a scenario of an early freeze-out which indeed increases K+/pi+ ratio while most other particle ratios remain essentially unchanged. Such an early freeze-out is supported by results from HBT studies.Comment: 8 pages, 5 figures, SQM2006 conference, Los Angeles, March 200
    corecore