29 research outputs found

    The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    Get PDF
    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions

    RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells.

    No full text
    c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancie

    Ca2+-dependent lipid binding and membrane integration of PopA, a harpin-like elicitor of the hypersensitive response in tobacco

    No full text
    PopA is released by type III secretion from the bacterial plant pathogen Ralstonia solanacearum and triggers the hypersensitive response (HR) in tobacco. The function of PopA remains obscure, mainly because mutants lacking this protein are not altered in their ability to interact with plants. In an attempt to identify the site of PopA activity in plant cells, we generated transgenic tobacco plants expressing the popA gene under the control of an inducible promoter. Immunocytologic analysis revealed that the HR phenotype of these plants correlated with the presence of PopA at the plant plasma membrane. Membrane localization was observed irrespective of whether the protein was designed to accumulate in the cytoplasm or to be secreted by the plant cell, suggesting a general lipid-binding ability. We found that the protein had a high affinity for sterols and sphingolipids in vitro and that it required Ca2+ for both lipid binding and oligomerization. In addition, the protein was integrated into liposomes and membranes from Xenopus laevis oocytes where it formed ion-conducting pores. These characteristics suggest that PopA is part of a system that aims to attach the host cell plasma membrane and to allow molecules cross this barrier

    In vitro culture of cells derived from larvae of the staghorn coral Acropora millepora

    No full text
    Previous attempts to culture cells from corals or\ud other cnidarians have been unsuccessful. These efforts\ud have, however, generally made use of adult tissue as\ud starting material. Early developmental stages are potentially more appropriate for the initiation of cell cultures, as the expectation is that a greater proportion of the cell population is undifferentiated and may have the intrinsic ability of unlimited cell renewal. To explore this idea, cell cultures were initiated from five key stages of coral development, and the presence of coral cells monitored by polymerase chain reaction (PCR) using coral-specific primers. After 4 weeks, semi-quantitative PCR implied that coral cells were better represented in cultures initiated from planulae than in those derived from earlier developmental stages. Coral cells were detected in cultures initiated from planulae for up to 10 weeks, but after this time, extensive contamination by the protist Thraustochytrium sp. was observed
    corecore