252 research outputs found
Stable hydrogen and carbon isotope ratios of extractable hydrocarbons in the Murchison meteorite
A fairly fool-proof method to ensure that the compounds isolated from meteorites are truly part of the meteorites and not an artifact introduced by exposure to the terrestrial environment, storage, or handling is presented. The stable carbon and hydrogen isotope ratios in several of the chemical compounds extracted from the Murchison meteorite were measured. The results obtained by studying the amino acids in this meteorite gave very unusual hydrogen and carbon isotope ratios. The technique was extended to the different classes of hydrocarbons and the hydrocarbons were isolated using a variety of separation techniques. The results and methods used in this investigation are described in this two page paper
The Insoluble Carbonaceous Material of CM Chondrites as Possible Source of Discrete Organics During the Asteroidal Aqueous Phase
The larger portion of the organic carbon in carbonaceous chondrites (CC) is present as a complex and heterogeneous macromolecular material that is insoluble in acids and most solvents (IOM). So far, it has been analyzed only as a whole by microscopy (TEM) and spectroscopy (IR, NMR, EPR), which have offered and overview of its chemical nature, bonding, and functional group composition. Chemical or pyrolytic decomposition has also been used in combination with GC-MS to identify individual compounds released by these processes. Their value in the recognition of the original IOM structure resides in the ability to properly interpret the decomposition pathways for any given process. We report here a preliminary study of IOM from the Murray meteorite that combines both the analytical approaches described above, under conditions that would realistically model the IOM hydrothermal exposure in the meteorite parent body. The aim is to document the possible release of water and solvent soluble organics, determine possible changes in NMR spectral features, and ascertain, by extension, the effect of this loss on the frame of the IOM residue. Additional information is included in the original extended abstract
Reaction of Q to thermal metamorphism in parent bodies: Experimental simulation
Planetary noble gases in chondrites are concentrated in an unidentified carrier phase, called “Q.” Phase Q oxidized at relatively low temperature in pure oxygen is a very minor part of insoluble organic matter (IOM), but has not been separated in a pure form. High‐pressure (HP) experiments have been used to test the effects of thermal metamorphism on IOM from the Orgueil (CI1) meteorite, at conditions up to 10 GPa and 700 °C. The effect of the treatment on carbon structural order was characterized by Raman spectroscopy of the carbon D and G bands. The Raman results show that the IOM becomes progressively more graphite‐like with increasing intensity and duration of the HP treatment. The carbon structural transformations are accompanied by an increase in the release temperatures for IOM carbon and Ar during stepped combustion (the former to a greater extent than the latter for the most HP treated sample) when compared with the original untreated Orgueil (CI1) sample. The Ar/C ratio also appears to vary in response to HP treatment. Since Ar is a part of Q, its release temperature corresponds to that for Q oxidation. Thus, the structural transformations of Q and IOM upon HP treatment are not equal. These results correspond to observations of thermal metamorphism in the meteorite parent bodies, in particular those of type 4 enstatite chondrites, e.g., Indarch (EH4), where graphitized IOM oxidized at significantly higher temperatures than Q (Verchovsky et al. 2002). Our findings imply that Q is less graphitized than most of the macromolecular carbonaceous material present during parent body metamorphism and is thus a carbonaceous phase distinct from other meteoritic IOM
An Extended Model for the Evolution of Prebiotic Homochirality: A Bottom-Up Approach to the Origin of Life
A generalized autocatalytic model for chiral polymerization is investigated
in detail. Apart from enantiomeric cross-inhibition, the model allows for the
autogenic (non-catalytic) formation of left and right-handed monomers from a
substrate with reaction rates and , respectively. The
spatiotemporal evolution of the net chiral asymmetry is studied for models with
several values of the maximum polymer length, N. For N=2, we study the validity
of the adiabatic approximation often cited in the literature. We show that the
approximation obtains the correct equilibrium values of the net chirality, but
fails to reproduce the short time behavior. We show also that the autogenic
term in the full N=2 model behaves as a control parameter in a chiral symmetry-
breaking phase transition leading to full homochirality from racemic initial
conditions. We study the dynamics of the N -> infinity model with symmetric
() autogenic formation, showing that it only achieves
homochirality for , where is an N-dependent
critical value. For we investigate the behavior of
models with several values of N, showing that the net chiral asymmetry grows as
tanh(N). We show that for a given symmetric autogenic reaction rate, the net
chirality and the concentrations of chirally pure polymers increase with the
maximum polymer length in the model. We briefly discuss the consequences of our
results for the development of homochirality in prebiotic Earth and possible
experimental verification of our findings
Organics preserved in anhydrous interplanetary dust particles: Pristine or not?
The chondritic‐porous subset of interplanetary dust particles (CP‐IDPs) are thought to have a cometary origin. Since the CP‐IDPs are anhydrous and unaltered by aqueous processes that are common to chondritic organic matter (OM), they represent the most pristine material of the solar system. However, the study of IDP OM might be hindered by their further alteration by flash heating during atmospheric entry, and we have limited understanding on how short‐term heating influences their organic content. In order to investigate this problem, five CP‐IDPs were studied for their OM contents, distributions, and isotopic compositions at the submicro‐ to nanoscale levels. The OM contained in the IDPs in this study spans the spectrum from primitive OM to that which has been significantly processed by heat. Similarities in the Raman D bands of the meteoritic and IDP OMs indicate that the overall gain in the sizes of crystalline domains in response to heating is similar. However, the Raman ΓG values of the OM in all of the five IDPs clearly deviate from those of chondritic OM that had been processed during a prolonged episode of parent body heating. Such disparity suggests that the nonaromatic contents of the OM are different. Short duration heating further increases the H/C ratio and reduces the δ13C and δD values of the IDP OM. Our findings suggest that IDP OM contains a significant proportion of disordered C with low H content, such as sp2 olefinic C=C, sp3 C–C, and/or carbonyl contents as bridging material
A Rapid Assessment of Avoidable Blindness in Southern Zambia
INTRODUCTION: A rapid assessment of avoidable blindness (RAAB) was conducted in Southern Zambia to establish the prevalence and causes of blindness in order to plan effective services and advocate for support for eye care to achieve the goals of VISION 2020: the right to sight. METHODS: Cluster randomisation was used to select villages in the survey area. These were further subdivided into segments. One segment was selected randomly and a survey team moved from house to house examining everyone over the age of 50 years. Each individual received a visual acuity assessment and simple ocular examination. Data was recorded on a standard proforma and entered into an established software programme for analysis. RESULTS: 2.29% of people over the age of 50 were found to be blind (VA <3/60 in the better eye with available correction). The major cause of blindness was cataract (47.2%) with posterior segment disease being the next main cause (18.8%). 113 eyes had received cataract surgery with 30.1% having a poor outcome (VA <6/60) following surgery. Cataract surgical coverage showed that men (72%) received more surgery than women (65%). DISCUSSION: The results from the RAAB survey in Zambia were very similar to the results from a similar survey in Malawi, where the main cause of blindness was cataract but posterior segment disease was also a significant contributor. Blindness in this part of Zambia is mainly avoidable and there is a need for comprehensive eye care services that can address both cataract and posterior segment disease in the population if the aim of VISION 2020 is to be achieved. Services should focus on quality and gender equity of cataract surgery
The cometary composition of a protoplanetary disk as revealed by complex cyanides
Observations of comets and asteroids show that the Solar Nebula that spawned
our planetary system was rich in water and organic molecules. Bombardment
brought these organics to the young Earth's surface, seeding its early
chemistry. Unlike asteroids, comets preserve a nearly pristine record of the
Solar Nebula composition. The presence of cyanides in comets, including 0.01%
of methyl cyanide (CH3CN) with respect to water, is of special interest because
of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like
compositions of simple and complex volatiles are found in protostars, and can
be readily explained by a combination of gas-phase chemistry to form e.g. HCN
and an active ice-phase chemistry on grain surfaces that advances
complexity[3]. Simple volatiles, including water and HCN, have been detected
previously in Solar Nebula analogues - protoplanetary disks around young stars
- indicating that they survive disk formation or are reformed in situ. It has
been hitherto unclear whether the same holds for more complex organic molecules
outside of the Solar Nebula, since recent observations show a dramatic change
in the chemistry at the boundary between nascent envelopes and young disks due
to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and
HC3N) in the protoplanetary disk around the young star MWC 480. We find
abundance ratios of these N-bearing organics in the gas-phase similar to
comets, which suggests an even higher relative abundance of complex cyanides in
the disk ice. This implies that complex organics accompany simpler volatiles in
protoplanetary disks, and that the rich organic chemistry of the Solar Nebula
was not unique.Comment: Definitive version of the manuscript is published in Nature, 520,
7546, 198, 2015. This is the author's versio
Extraterrestrial nucleobases in the Murchison meteorite
Carbon-rich meteorites, carbonaceous chondrites, contain many biologically
relevant organic molecules and delivered prebiotic material to the young Earth.
We present compound-specific carbon isotope data indicating that measured
purine and pyrimidine compounds are indigenous components of the Murchison
meteorite. Carbon isotope ratios for uracil and xanthine of delta13C=+44.5per
mil and +37.7per mil, respectively, indicate a non-terrestrial origin for these
compounds. These new results demonstrate that organic compounds, which are
components of the genetic code in modern biochemistry, were already present in
the early solar system and may have played a key role in life's origin.Comment: 31 pages, 4 figures, 3 table
UV Circular Polarisation in Star Formation Regions : The Origin of Homochirality?
Ultraviolet circularly polarised light has been suggested as the initial cause of the homochirality of organic molecules in terrestrial organisms, via enantiomeric selection of prebiotic molecules by asymmetric photolysis. We present a theoretical investigation of mechanisms by which ultraviolet circular polarisation may be produced in star formation regions. In the scenarios considered here, light scattering produces only a small percentage of net circular polarisation at any point in space, due to the forward throwing nature of the phase function in the ultraviolet. By contrast, dichroic extinction can produce a fairly high percentage of net circular polarisation (∼10%) and may therefore play a key role in producing an enantiomeric excessPeer reviewe
- …