1,442 research outputs found
Solitons in a Baby-Skyrme model with invariance under area preserving diffeomorphisms
We study the properties of soliton solutions in an analog of the Skyrme model
in 2+1 dimensions whose Lagrangian contains the Skyrme term and the mass term,
but no usual kinetic term. The model admits a symmetry under area preserving
diffeomorphisms. We solve the dynamical equations of motion analytically for
the case of spinning isolated baryon type solitons. We take fully into account
the induced deformation of the spinning Skyrmions and the consequent
modification of its moment of inertia to give an analytical example of related
numerical behaviour found by Piette et al.. We solve the equations of motion
also for the case of an infinite, open string, and a closed annular string. In
each case, the solitons are of finite extent, so called "compactons", being
exactly the vacuum outside a compact region. We end with indications on the
scattering of baby-Skyrmions, as well as some considerations as the properties
of solitons on a curved space.Comment: 30 pages, 5 figures, revtex, major modifications, conclusions
modifie
Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency
This paper presents a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand shedding strategies are developed. Past research projects are presented to provide a context for the current projects. The economic case for implementing DR from a building owner perspective is also explored
Habitability and Biosignatures of Hycean Worlds
We investigate a new class of habitable planets composed of water-rich
interiors with massive oceans underlying H2-rich atmospheres, referred to here
as Hycean worlds. With densities between those of rocky super-Earths and more
extended mini-Neptunes, Hycean planets can be optimal candidates in the search
for exoplanetary habitability and may be abundant in the exoplanet population.
We investigate the bulk properties (masses, radii, and temperatures), potential
for habitability, and observable biosignatures of Hycean planets. We show that
Hycean planets can be significantly larger compared to previous considerations
for habitable planets, with radii as large as 2.6 Earth radii (2.3 Earth radii)
for a mass of 10 Earth masses (5 Earth masses). We construct the Hycean
habitable zone (HZ), considering stellar hosts from late M to sun-like stars,
and find it to be significantly wider than the terrestrial-like HZ. While the
inner boundary of the Hycean HZ corresponds to equilibrium temperatures as high
as ~500 K for late M dwarfs, the outer boundary is unrestricted to arbitrarily
large orbital separations. Our investigations include tidally locked `Dark
Hycean' worlds that permit habitable conditions only on their permanent
nightsides and `Cold Hycean' worlds that see negligible irradiation. Finally,
we investigate the observability of possible biosignatures in Hycean
atmospheres. We find that a number of trace terrestrial biomarkers which may be
expected to be present in Hycean atmospheres would be readily detectable using
modest observing time with the James Webb Space Telescope (JWST). We identify a
sizable sample of nearby potential Hycean planets that can be ideal targets for
such observations in search of exoplanetary biosignatures
A short-term statin treatment changes the contractile properties of fast-twitch skeletal muscles
Background :
Cumulative evidence indicates that statins induce myotoxicity. However, the lack of understanding of how statins affect skeletal muscles at the structural, functional, and physiological levels hampers proper healthcare management. The purpose of the present study was to investigate the early after-effects of lovastatin on the slow-twitch soleus (Sol) and fast-twitch extensor digitorum longus (EDL) muscles.
Methods :
Adult C57BL/6 mice were orally administrated with placebo or lovastatin [50 mg/kg/d] for 28 days. At the end of the treatment, the isometric ex vivo contractile properties of the Sol and EDL muscles were measured. Subtetanic and tetanic contractions were assessed and contraction kinetics were recorded. The muscles were then frozen for immunohistochemical analyses. Data were analyzed by two-way ANOVA followed by an a posteriori Tukey’s test.
Results :
The short-term lovastatin treatment did not induce muscle mass loss, muscle fiber atrophy, or creatine kinase (CK) release. It had no functional impact on slow-twitch Sol muscles. However, subtetanic stimulations at 10 Hz provoked greater force production in fast-twitch EDL muscles. The treatment also decreased the maximal rate of force development (dP/dT) of twitch contractions and prolonged the half relaxation time (1/2RT) of tetanic contractions of EDL muscles.
Conclusions :
An early short-term statin treatment induced subtle but significant changes in some parameters of the contractile profile of EDL muscles, providing new insights into the selective initiation of statin-induced myopathy in fast-twitch muscles
On the Strong Coupling Limit of the Faddeev-Hopf Model
The variational calculus for the Faddeev-Hopf model on a general Riemannian
domain, with general Kaehler target space, is studied in the strong coupling
limit. In this limit, the model has key similarities with pure Yang-Mills
theory, namely conformal invariance in dimension 4 and an infinite dimensional
symmetry group. The first and second variation formulae are calculated and
several examples of stable solutions are obtained. In particular, it is proved
that all immersive solutions are stable. Topological lower energy bounds are
found in dimensions 2 and 4. An explicit description of the spectral behaviour
of the Hopf map S^3 -> S^2 is given, and a conjecture of Ward concerning the
stability of this map in the full Faddeev-Hopf model is proved.Comment: 21 pages, 0 figure
Experimental transonic steady state and unsteady pressure measurements on a supercritical wing during flutter and forced discrete frequency oscillations
Present flutter analysis methods do not accurately predict the flutter speeds in the transonic flow region for wings with supercritical airfoils. Aerodynamic programs using computational fluid dynamic (CFD) methods are being developed, but these programs need to be verified before they can be used with confidence. A wind tunnel test was performed to obtain all types of data necessary for correlating with CFD programs to validate them for use on high aspect ratio wings. The data include steady state and unsteady aerodynamic measurements on a nominal stiffness wing and a wing four times that stiffness. There is data during forced oscillations and during flutter at several angles of attack, Mach numbers, and tunnel densities
Soliton-potential interaction in the nonlinear Klein-Gordon model
The interaction of solitons with external potentials in nonlinear
Klein-Gordon field theory is investigated using an improved model. The
presented model has been constructed with a better approximation for adding the
potential to the Lagrangian through the metric of background space-time. The
results of the model are compared with another model and the differences are
discussed.Comment: 14 pages,8 figure
Physiological role of receptor activator nuclear factor-kB (RANK) in denervation-induced muscle atrophy and dysfunction
The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles. We used the Cre-Lox approach to inactivate muscle RANK (RANKmko) and showed that RANK deletion preserves the force of denervated fast-twitch EDL muscles. However, RANK deletion had no positive impact on slow-twitch Sol muscles. In addition, denervating RANKmko EDL muscles induced an increase in the total calcium concentration ([CaT]), which was associated with a surprising decrease in SERCA activity. Interestingly, the levels of STIM-1, which mediates Ca2+ influx following the depletion of SR Ca2+ stores, were markedly higher in denervated RANKmko EDL muscles. We speculated that extracellular Ca2+ influx mediated by STIM-1 may be important for the increase in [CaT] and the gain of force in denervated RANKmko EDL muscles. Overall, these findings showed for the first time that the RANKL/RANK interaction plays a role in denervation-induced muscle atrophy and dysfunction
- …