36 research outputs found

    Lead, cadmium and mercury contents of Fungi in Mikkeli, SE Finland

    Get PDF

    GDNF is not required for catecholaminergic neuron survival in vivo.

    No full text
    Glial cell line-derived neurotrophic factor (GDNF) has been tested in clinical trials to treat Parkinson’s disease with promising but variable results. Improvement of therapeutic effectiveness requires solid understanding of the physiological role of GDNF in the maintenance of the adult brain catecholamine system. However, existing data on this issue is contradictory. Here we show with three complementary approaches that, independent of the time of reduction, Gdnf is not required for maintenance of catecholaminergic neurons in adult mice

    Endomorphin-2 and endomorphin-1 promote the extracellular amount of accumbal dopamine via nonopioid and mu-opioid receptors, respectively.

    No full text
    Contains fulltext : 49412.pdf (publisher's version ) (Closed access)Activation of mu-opioid receptors in the nucleus accumbens (NAc) is known to increase accumbal dopamine efflux in rats. Endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2); EM-2) and endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2); EM-1) are suggested to be the endogenous ligands for the mu-opioid receptor. As the ability of EM-2 and EM-1 to alter the accumbal extracellular dopamine level has not yet been studied in freely moving rats, the present study was performed, using a microdialysis technique that allows on-line monitoring of the extracellular dopamine with a temporal resolution of 5 min. A 25 min infusion of either EM-2 or EM-1 into the NAc (5, 25, and 50 nmol) produced a dose-dependent increase of the accumbal dopamine level. The EM-2 (50 nmol)- and EM-1 (25 and 50 nmol)-induced dopamine efflux were abolished by intra-accumbal perfusion of tetrodotoxin (2 muM). Intra-accumbal perfusion of the mu-opioid receptor antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH(2); 3 nmol) failed to affect the EM-2 (50 nmol)-induced dopamine release, whereas it significantly inhibited the EM-1 (25 and 50 nmol)-induced dopamine release. The EM-1 (50 nmol)-induced accumbal dopamine efflux was significantly reduced by the systemic administration of the putative mu1-opioid receptor antagonist naloxonazine (15 mg/kg, intraperitoneally (i.p.), given 24 h before starting the perfusion). Systemic administration of the aspecific opioid receptor antagonist naloxone (1 mg/kg, i.p., given 10 or 20 min before starting the perfusion) also failed to affect the EM-2 (50 nmol)-induced dopamine efflux, whereas it significantly inhibited the EM-1 (25 and 50 nmol)-induced dopamine efflux. The present study shows that the intra-accumbal infusion of EM-2 and EM-1 increases accumbal dopamine efflux by mechanisms that fully differ. It is concluded that the effects of EM-2 are not mediated via opioid receptors in contrast to the effects of EM-1 that are mediated via mu1-opioid receptors in the NAc
    corecore