14 research outputs found

    Surfactant Protein-A Suppresses Eosinophil-Mediated Killing of Mycoplasma pneumoniae in Allergic Lungs

    Get PDF
    Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A−/− allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A−/− mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage

    Antimicrobial proteins and polypeptides in pulmonary innate defence

    Get PDF
    Inspired air contains a myriad of potential pathogens, pollutants and inflammatory stimuli. In the normal lung, these pathogens are rarely problematic. This is because the epithelial lining fluid in the lung is rich in many innate immunity proteins and peptides that provide a powerful anti-microbial screen. These defensive proteins have anti-bacterial, anti- viral and in some cases, even anti-fungal properties. Their antimicrobial effects are as diverse as inhibition of biofilm formation and prevention of viral replication. The innate immunity proteins and peptides also play key immunomodulatory roles. They are involved in many key processes such as opsonisation facilitating phagocytosis of bacteria and viruses by macrophages and monocytes. They act as important mediators in inflammatory pathways and are capable of binding bacterial endotoxins and CPG motifs. They can also influence expression of adhesion molecules as well as acting as powerful anti-oxidants and anti-proteases. Exciting new antimicrobial and immunomodulatory functions are being elucidated for existing proteins that were previously thought to be of lesser importance. The potential therapeutic applications of these proteins and peptides in combating infection and preventing inflammation are the subject of ongoing research that holds much promise for the future

    Supplementary Material for: The House Dust Mite Major Allergen Der p 23 Displays O-Glycan-Independent IgE Reactivities but No Chitin-Binding Activity

    No full text
    <p><b><i>Background:</i></b> The in-depth characterization of the recently identified house dust mite (HDM) major allergen Der p 23 requires the production of its recombinant counterpart because the natural allergen is poorly extractable from fecal pellets. This study aimed to provide a detailed physico-chemical characterization of recombinant Der p 23 (rDer p 23) as well as to investigate its IgE reactivity in a cohort of HDM-allergic patients from Thailand. <b><i>Methods:</i></b> Purified rDer p 23, secreted from recombinant <i>Pichia pastoris</i>, was characterized by mass spectrometry and circular dichroism analyses as well as for its chitin-binding activity. The IgE-binding frequency and allergenicity of Der p 23 were determined by ELISA and RBL-SX38 degranulation assays, respectively. <b><i>Results:</i></b> Purified intact rDer p 23 carried O-mannosylation and mainly adopted a random coil structure. Polyclonal antibodies to rDer p 23 can detect the corresponding natural allergen (nDer p 23) in aqueous fecal pellet extracts, suggesting that both forms of Der p 23 share common B-cell epitopes. Despite its homologies with chitin-binding proteins, both natural Der p 23 and rDer p 23 were unable to interact in vitro with chitin matrices. Of 222 Thai HDM-allergic patients tested, 54% displayed Der p 23-specific IgE responses. Finally, the allergenicity of rDer p 23 was confirmed by the degranulation of rat basophil leukemia cells. <b><i>Conclusion:</i></b> Our findings highlighted important levels of Der p 23 sensitizations in Thailand. Our study clearly suggested that rDer p 23 is likely more appropriate for HDM allergy component-resolved diagnosis than HDM extracts.</p

    Diagnosis and management of shellfish allergy: current approach and future needs

    No full text
    Purpose of review: Shellfish allergy is an increasing health concern worldwide with over 2% of the population affected and higher rates in countries with high consumption. Shellfish includes both crustaceans and mollusks and constitutes one of the major food groups triggering allergic reactions. Recent findings: Shrimp is the best-studied crustacean, in which the major shellfish allergen, tropomyosin, was initially characterized. Nevertheless, several other allergens have been identified and should be considered despite prevalence of sensitization being lower than tropomyosin (e.g., arginine kinase, myosin light chain, and sarcoplasmic calcium-binding protein). Summary: Diagnosis is not always straightforward; due to the conserved nature of most allergens, there is extensive cross-reactivity between different species which hampers proper diagnosis and management. Clinical symptoms can range from mild local ones to life-threatening anaphylaxis, sometimes with cofactor involvement. Currently, there is no available curative treatment besides diet avoidance and treatment of symptoms in case of accidental exposure

    Collectins: Innate Immune Pattern Recognition Molecules

    No full text
    corecore